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Abstract

This thesis addresses the study of the motion perception in mammals and how bio-
inspired systems can be applied to real applications. The first part of this thesis
relates how the visual information is processed in the mammal’s brains and how mo-
tion estimation is usually modeled. Based on this analysis of the state of the art, we
propose a feedforward V1-MT core architecture. This feedforward V1-MT core archi-
tecture will be a basis to study two different kinds of applications. The first applica-
tion is human action recognition, which is still a challenging problem in the computer
vision community. We show how our bio-inspired method can be successfully applied
to this real application. Interestingly, we show how several computational properties
inspired from motion processing in mammals, allow us to reach high quality results,
which will be compared to latest reference results. The second application of the bio-
inspired architecture proposed in this thesis, is to consider the problem of motion
integration for the solution of the aperture problem. We investigate the role of de-
layed V1 surround suppression, and how the 2D information extracted through this
mechanism can be integrated to propose a solution for the aperture problem. Finally,
we highlight a variety of important issues in the determination of motion estimation
and additionally we present many potential avenues for future research efforts.
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Résumé

Cette thèse porte sur l’étude et la modélisation de la perception du mouvement chez
le mammifère. Nous montrons comment un système bio-inspiré peut être appliqué
dans le cadre d’une application réelle de vision par ordinateur, mais aussi comment
il permet de mieux comprendre des phénomènes observés en neurosciences. La pre-
mière partie de cette thèse étudie comment l’information visuelle est traitée chez
le mammifère et comment l’estimation du mouvement est classiquement modelisée.
A partir de cette analyse de l’état de l’art, nous avons proposé une architecture se-
quentielle générale, modélisant les aires corticales V1 et MT. Nous avons utilisé cette
architecture pour étudier deux applications. La première application est la reconais-
sance d’actions dans les séquences d’images, problèmatique encore ouvert en vision
par ordinateur. Nous montrons comment notre architecture bio-inspirée peut être
appliquée avec succés dans le cadre de cette application réelle, en y apportant de nou-
velles idées. En particulier, nous montrons comment la prise en compte de plusieurs
propriétés du système visuel chez le mammifère nous permettent d’obtenir des ré-
sultats de haute qualité, comparables à ceux des approches les plus récentes. La
deuxième application de l’architecture bio-inspirée proposée dans le cadre de cette
thèse, est de chercher à comprendre la dynamique de l’intégration du mouvement.
Pour cela, nous avons cherché à comprendre le rôle fonctionnel de la suppression du
pourtour des neurones de V1. Notre modèle montre comment l’information 2D ex-
traite à partir de ce mécanisme de suppression peut être intégrée dans la solution
du problème d’ouverture. Enfin de nombreuse perspectives concluent ce travail, qui
montrent combien l’étude de l’estimation de mouvement conserve encore de nom-
breuses problematiques.
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CHAPTER 1

INTRODUCTION

“What does it mean to see? The plain man’s answer would be, to know what is where
by looking. In other words, vision is the process of discovering from images what is
present in the world, and where it is.”
– David Marr

1.1 UNDERSTANDING VISION

52%

52% is the percentage of the monkey’s cortical area dedicated to vision. Just compare
it with the other sensory functionalities! somatosensory: 10%, motor: 8%, auditory:
3%, olfactory: 1%. So what makes visual information so demanding?

David Marr, as a pioneer in computational neurosciences, stated that vision is not
only the action of seeing, but also the action of processing what is present in the world
and where it is. According to him, the study of vision must therefore not only include
the study of isolated properties, but also the nature of the internal representations by
which we capture this information and thus make it available as a basis for decision
about our thoughts and actions. In other words, a duality between representation
and information processing.

Understanding vision, requires the understanding of the visual system, which
is one of the most ambitious project in science of the last 50 years. Get into the
brain, connect electrodes, differentiate functional areas or measure the activity of
population of neurons; all these efforts made following the same direction, which is, to
better understand cortical processing from the functional level down to the neuronal
level.

Thanks to these neurophysiological studies, connections between different brain
areas have been established revealing the big complexity of the visual system, which
is illustrated in Figure 1.1. Within visual brain areas, it has been possible to also
identify those ones related to motion analysis, being the main ones: V1, MT and
MST.
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Figure 1.1: Circuit diagram of macaque visual areas (from Felleman and Van Essen (1991)).

Motion

Within the mechanisms related to vision, motion analysis is one of the most impor-
tant. The visual detection of motion is crucial for survival of all but the very simplest
creatures. Moving objects are likely to be a dangerous predator, or potential food, or
a mate. Indeed, to produce signals in the absence of movement is a property of eyes
quite high up the evolutionary scale. But motion is also crucial for a number of other
tasks. For example, let us consider the case of that patient who suffered a stroke
damaging her extrastiate region, thought to be involved in motion analysis. That
patient was unable to appreciate the motion of objects, but also she had difficulties
to pour tea into a cup because the fluid "seemed" frozen, or to follow a dialog because
she could not follow the movements of the speaker’s mouth. This illustrates the role
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of motion in our daily activities, and even in our social interactions.
Motion is also crucial as soon as we consider vision application dealing with

videos. Indeed, any real system needs to have a motion estimation at some stage.
Some examples include robotics, autonomous navigation, weather forecast, video
restoration, content retrieval, video surveillance, crowd analysis and action recog-
nition. So there are strong needs to have some robust and precise algorithms to esti-
mate motion in real scenes, and this justifies the very large literature in this domain
done by the computer vision community. Interestingly, this problem remains chal-
lenging, and we can wonder whether new ideas coming from biology could improve
the current performances.

Goal and methodology

In order to understand some functionalities of the visual processing, the objective of
this thesis is to propose a bio-inspired feedforward model for motion analysis. Under
our definition, the bio-inspiration term is assigned to models that either follow the
brain hierarchical architecture in some sense, or model functionalities or operations
found in real cell recordings, or implement analogue or spiking neurons. Bio-inspired
models therefore can be useful to understand many properties of the visual system
but just a few of them are proposed to deal with real sequences in order to experience
vision.

In this thesis we are interested in motion processing. We studied the mechanisms
involved in this task in the mammal brain and we proposed feedforward V1-MT mod-
els to lead with two classical topics related to motion analysis: human action recog-
nition and motion integration.

Human action recognition

Human action recognition is the task of recognize the action performed in image
sequences, assigning to each sequence an action label indicating the action taking
place, e.g., walking, running, etc.

Initially, the analysis of human motion was studied by the psychologist Gunner Jo-
hansson in 1973 (Johansson (1973)). He produced extremely striking demonstrations
of how little information is needed for seeing moving humans, and animals. Placing
lights at the joints of someone’s arms and legs, he or she becomes invisible in a dark
room. As soon as the person moves, the lights are seen as a human figure, and even
the gender can be identified. This type of stimulus, called biological motion or point-
light stimulus is a highly complex motion pattern and interesting in many senses:
it links the perception of motion with form (Pucel and Perret (2003); Michels et al.
(2005); Hirai and Hiraki (2006)), it removes distractors such as background, clothing,
etc.

But the real world is not seen as point-light stimuli, our visual system receives as
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input real video sequences that must be fully interpreted to recognize patterns. And
according to these patterns interact with the environment. Most of our social life
and interaction with the environment comes from the recognition of members of our
own specie, specially the actions that they are performing. As humans, we can easily
recognize if a person is approaching to us walking, running, if someone is waving one
hand, two hands, etc.

Automatizing this task has interesting applications in different domains including
visual surveillance, video retrieval and human-computer interaction. This problem
has been classically treated in the computer vision community, where the methods
proposed do not pretend to be bio-inspired.

Currently, within all the methods proposed both in the computer vision commu-
nity and in the computational neuroscience community, any of them is able to perform
human action recognition in a variety of conditions and scenarios, motivating of this
way the development of new approaches following new tracks. We asked whether the
development of bio-inspired methodologies could bring new insights that have not
been studied before.

In this thesis we developed two different architectures to convey human action
recognition: We explore how actions can be represented from analog MT output or
spike trains, how different center-surround interactions in MT neurons affect the
performance of the human action recognition task, etc.

Motion integration

Motion integration mechanisms convey to the solution of the aperture problem. The
aperture problem is a classical crossroad in visual neuroscience and many models
have been proposed as solution. The aperture problem has called the attention of
scientist along history, observing that the real movement of objects in the world is
relative, and the only way to measure it is by reference to other objects.

Several mechanisms have been proposed to understand how the mammal visual
system computes the real motion direction of objects. Within the mechanisms pro-
posed we can cite: end-detector information coming from V2, spatial diffusion of
non-ambiguous motion signals, feedbacks from upper layers, surround suppression,
winner-take-all mechanisms, etc.

Inspired by the recent findings reported by Pack et al. (2004), in this thesis we
asked whether the V1 surround-suppression can lead the solution of the aperture
problem. The V1 surround suppression was implemented in the feedforward V1-
MT architecture proposed in this thesis, and we explore its effect in the preferred
direction of MT neurons, which have been reported as a mechanism for the solution
of the aperture problem (Pack et al. (2004); Huang et al. (2007); Tlapale et al. (2008)).
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1.2 ORGANIZATION AND MAIN CONTRIBUTION

This thesis is organized in four parts (see Figure 1.2):

• Part I: Motion Perception in Mammals describes the studies related to how the
visual motion information is processed in the mammal brain and how visual mo-
tion mechanisms have been classically modeled: on its detection and processing.
We also show the feedforward V1-MT core architecture proposed and developed
in this thesis.

• Part II: Human Action Recognition shows the state of the art of this problem
together with two different proposals, created from the core model defined in
Part I, to perform human action recognition.

• Part III shows how the V1 surround inhibition can be involved in the motion
integration mechanism to solve the aperture problem.

• Finally, Part IV groups the conclusion, perpectives and publications associated
to the work developed in this thesis.

Figure 1.2: Organization of this thesis and relationship between chapters.

The main contributions are:

1. Proposition of a bio-inspired feedforward V1-MT core architecture.
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2. Frequency-based analysis of the V1 motion detectors. This analysis shows the
relationship between different parameters and the spatiotemporal frequency
tuning.

3. The implementation of an analog V1-MT feedforward architecture to be applied
to human action recognition. Together with the implementation of a classifica-
tion method to analyze MT analog output. Also, the importance of MT surround
diversity in human action recognition performance.

4. The implementation of a spiking V1-MT feedforward architecture to be applied
to human action recognition. Considering two characteristics of the neural code:
mean firing rate of each neuron and synchrony between pairs of neurons, two
motion maps are defined as a representation of the input motion information:
mean motion map and synchrony motion map. We show that these two motion
maps can successfully perform human action recognition.

5. A simple mechanism to explain the shifting on the preferred-direction of MT
neurons as a motion integration solution.

1.3 DETAILED PLAN

Part I: Motion Perception in Mammals

Chapter 3 gives the principles to understand how the visual motion information is
processed in the mammal brain. This chapter describes the state of the art of the
neurophysiological studies regarding motion perception in mammals, focusing on V1,
MT and MST. This biological background will be a source of inspiration to develop
bio-inspired models for motion processing.

The state of the art of motion detection and bio-inspired models for motion pro-
cessing are described in Chapter 4. We review classical techniques to detect motion
in input video sequences, both in computer vision and in computational neuroscience.
In particular, we focused on those methods that inspired the development of models
therein.

Considering the information reviewed in Chapters 3 and 4, Chapter 5 describes
the feedforward V1-MT core architecture proposed in this thesis for motion process-
ing.

Part II: Human Action Recognition

The state of the art of the human action recognition is described in Chapter 6, cov-
ering the methods developed in the computer vision and computational neuroscience
communities.
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In order to deal with the human action recognition problem, we extended the
feedforward V1-MT core architecture described in Chapter 5 (as it is shown in Figure
1.3) proposing as contribution two different implementations:

Figure 1.3: Towards human action recognition problem. Two implementations of the motion stream
are investigated starting from the feedforward V1-MT core architecture defined in Chapter 5.

• Chapter 7: Analog implementation. The output of the energy-motion detec-
tors is passed through a nonlinear function in order to estimate the mean firing
rate of a V1 neuron. The output of V1 neurons feed a MT neuron which is mod-
eled by a conductance-based neuron model. Depending on the spatial location
of V1 neurons inside MT receptive field, V1 neurons can contribute as an exci-
tatory or inhibitory conductance. The values of the membrane potential of MT
neurons are used to define a feature vector (mean motion map) representing the
motion information of the input sequence. These motion maps are then used to
perform recognition.

• Chapter 8: Spiking implementation. The output of the energy-motion detec-
tors feed a leak-integrate-and-fire (LIF) V1 neuron as an external input current.
When the membrane potential of the V1 neurons reaches a threshold, a spike
is generated. The spike trains obtained in V1 neurons feed spiking MT neu-
ron layer through input conductance. Depending on the spatial location of V1
neurons inside MT receptive field, V1 neurons can contribute as an excitatory
or inhibitory conductance. The spike trains generated by MT neurons are used
to build two different motion maps representing the input motion information:
mean motion map and synchrony motion map. The performance of both motion
maps was evaluated in the human action recognition task.
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Part III: Motion Integration

Chapter 9 explores the role of V1 surround suppression in the motion integration
problematic to solve the aperture problem, specifically, how the V1 surround suppres-
sion can affect the preferred direction of MT neurons. The architecture implemented
also derives from the feedforward V1-MT core architecture presented in Chapter 5,
and it is shown in Figure 1.4. We show some simulations performed for classical psy-
chophysics stimuli, such as barberpoles and plaids.

Figure 1.4: Study of the effect of V1 surround suppression in the solution of the aperture problem.

Part IV: Conclusion

Chapter 10 shows the conclusion, discussion and perspectives of the results obtained
in this thesis and their comparison with the existing bibliography. Finally, Chapter
12 enumerates the publications of the author arising from this thesis.
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CHAPTER 2

INTRODUCTION (FRANÇAIS)

“What does it mean to see? The plain man’s answer would be, to know what is where
by looking. In other words, vision is the process of discovering from images what is
present in the world, and where it is.”
– David Marr

2.1 QUE SIGNIFIE VISION?

52%

52% est le pourcentage des aires corticales chez le singe macaque dédiées à la vision.
Nous pouvons comparer ce pourcentage avec les autres modalités, somatosensorielle:
10%, moteur: 8%, auditif: 3%, olfactif: 1%. Donc, pour quelle raison le traitement de
l’information visuelle est-il si exigeant?

David Marr, un pionnier de l’étude de la vision, a remarqué que la vision n’est pas
seulement l’action de voir, mais l’action de traiter ce qui est présent dans le monde
et où le système évolue. Selon lui, l’étude de la vision ne doit pas seulement inclure
l’étude des proprietés isolées, mais aussi la nature des représentations internes grâce
auxquelles nous sommes capable d’acquérir cette information et la rendre disponible
pour nos décisions et actions.

La compréhension de la vision nécessite de comprendre le système visuel, tâche
qui est un des projets les plus ambitieux des derniers 50 ans. Mesurer l’activité du
cerveau, connecter des éléctrodes, classifier les différentes aires corticales selon leur
fonctionnalité, etc, tous ces efforts vont dans la même direction, à savoir mieux com-
prendre les traitements corticaux, du niveau fonctionnel jusqu’au niveau neuronal.

Grâce à de nombreuses études neurophysiologiques, la connexion entre différentes
aires corticales a été établie en révélant la grande complexité du système visuel,
comme illustré à la Figure 2.1. Par exemple, parmi les différentes aires liées à la
vision, il a été aussi possible d’identifier celles qui sont reliées au traitement du mou-
vement, les plus importantes etant: V1, MT et MST.
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Figure 2.1: Diagramme des connexions du système visuel chez le singe macaque (extraite de
Felleman and Van Essen (1991)).

Le Mouvement

Parmi les mécanismes reliés à la vision, l’analyse du mouvement est l’un des plus
importants. La detection du mouvement est essentielle pour le survi de toutes les
créatures. Les objets qui se déplacent pourraient être de probables prédateurs, source
de nourriture, ou compagnon. En fait, l’effet de produire une activation en l’absence
de mouvement est une proprieté des yeux qui apparaît vers la fin la chaîne évolu-
tionnaire. Mais le mouvement est aussi essentiel pour de nombreuses autres tâches.
Par exemple, considérons le cas d’une patiente ayant sa région cérébrale extrastiée
endommagée, région que l’on pense reliée au traitement du mouvement. Cette pa-
tiente est incapable d’apprécier le mouvement des objets, mais elle a aussi des dif-
ficultés pour verser du thé dans une tasse parce que le liquide lui semble “gelé”, ou
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pour suivre un dialogue parce qu’elle n’est pas capable de suivre les mouvements des
lèvres de la personne qui parle. Ceci illustre donc par exemple le rôle du mouvement
dans nos activités quotidiennes, et aussi dans nos interactions sociales.

Le mouvement est aussi essentiel pour de nombreuses applications artificielles
impliquant des données visuelles. En fait, tout système réel a besoin d’une étape
d’estimation du mouvement. Par exemple, nous pouvons citer la robotique, la nav-
igation autonome, prévision en météorologie, la restauration de vidéos, la récuper-
ation de contenus, la vidéo surveillance, l’analyse d’une foule ou la reconnaissance
d’actions. Donc, nous avons besoin d’avoir des algorithmes robustes et précis pour es-
timer le mouvement d’une scène réelle, et ces besoins justifient la littérature étendue
sur le domaine produite par la communauté en vision par ordinateur. Cette problé-
matique est encore ouverte la plupart des modèles reposant sur des hypothèses et
contraintes concernant la scène à analyser. Aussi, nous pouvons nous demander si
de nouvelles idées provenant de la biologie peuvent améliorer les performances des
systèmes actuels.

Objet de cette thèse et méthodologie

Pour chercher à comprendre les fonctionalités du traitement du mouvement, l’objet
de cette thèse est de proposer un système séquentiel pour l’analyse du mouvement.
Selon notre définition, le terme bio-inspiré est associé aux modèles dans lequels soit
l’architecture du cerveau a inspiré celle du système, soit des fonctionalités ou opéra-
tions réalisées par des cellules réelles sont implementées, par exemple une implé-
mentation analogique ou événnementielle (“spikante”). L’implémentation de modèles
bio-inspirés peut nous donner une meilleure compréhension des proprietés du sys-
tème visuel. Cependant seule une petite partie des modèles existant s’appliquent à
des séquences réelles.

L’objet de cette thèse est le traitement du mouvement. Nous étudions les mécan-
ismes liés avec cette tâche chez le mammifère et nous proposons des modèles sequen-
tiels modélisant les aires corticales V1-MT, pour affronter deux problèmes classiques
de l’analyse du mouvement: la reconnaissance d’actions et l’intégration du mouve-
ment.

La reconnaissance d’actions

La reconnaissance d’actions est la tâche de reconnaître une action enregistrée dans
une séquences d’images, donc d’assigner à chaque séquence une étiquette dénotant
l’action, ex: marcher, courir, etc...

Initialement, l’analyse du mouvement chez l’humain a été étudié par le psycho-
logue Gunne Johansson en 1973 (Johansson (1973)). Il a demontré comment très
peu d’information est requis pour percevoir le mouvement, chez l’humain, et chez les
animaux. Il a placé des points lumineux sur les bras et les jambes d’une personne.
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Quand la personne bouge, le mouvement des points lumineux est identifié comme un
mouvement humaine, dont le genre peut même être identifié. Ce type de stimulus,
connu sur le nom de biological motion ou point-light stimulus est un pattern de mou-
vement complexe et intéressant pour plusieurs raisons: 1) il montre un lien entre la
perception du mouvement et la forme (Pucel and Perret (2003); Michels et al. (2005);
Hirai and Hiraki (2006)), 2) il évite les distracteurs comme le fond, les vêtements, etc.

Mais le monde réel n’est pas un stimulus de type point-light: Notre système vi-
suel reçoit comme entrée un flux continu d’images qui doit être interpreté dans sa
globalité avant de procéder à la reconnaissance des patterns de la scène. Puis, selon
cette reconnaissance, nous interagissons avec l’environement. La plus grande partie
de notre vie sociale et de nos interactions avec l’environnement vient de la reconnais-
sance des membres de notre entourage, particulièrement des actions réalisées par
eux. En tant qu’humain, nous pouvons reconnaître facilement si une personne se
rapproche en marchant, en courant, ou bien si cette personne nosu salue avec une ou
ses deux mains.

L’automatisation de cette tâche de reconnaissance a plusieurs applications dans
différents domaines, incluant la vidéo surveillance et l’interaction homme-machine.
Cette problématique est traitée par la communauté de vision par ordinateur, où les
méthodes développées n’ont pas vocation à s’inspirer de modèles biologiques..

Actuellement, entre les méthodes proposées dans les communautés de vision par
ordinateur et dans les neurosciences computationnelles, aucune n’est capable de re-
connaître des actions dans n’importe quelles conditions et scènes. Cette limitation
motive le dévelopement de nouvelles approches qui suivent de nouvelles pistes. Nous
nous demandons ici si le dévelopement de méthodologies inspirées par la biologie
peut nous montrer ces nouvelles pistes.

Dans le cadre de cette thèse, nous avons developpé deux architectures différentes
pour accomplir la reconnaissance d’actions: Nous avons exploré comment les actions
peuvent être représentées à partir de la sortie analogique ou évènementielle des neu-
rones de MT. Par exemple, comment l’implémentation de différentes interactions en-
tre centre et périphérie dans les neurones de MT a une incidence sur la performance
de la reconnaissance d’actions?

Intégration du mouvement

Les mécanismes d’intégration du mouvement offrent une solution au problème
d’ouverture. Le problème d’ouverture est un problème classique et plusieurs modèles
ont été proposés comme solution. Le problème d’ouverture a attiré l’attention des
scientifiques qui ont aussi observé que le mouvement réel d’objets est relatif, et que
la seule façon de le mesurer est à partir de l’information relative des objets autour.

Plusieurs mécanismes ont été proposés pour chercher à comprendre comment le
système visuel chez le mammifère calcule la vraie direction du mouvement des ob-
jets. Parmi les mécanismes proposés, nous pouvons citer: l’information de détection
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de contours provenant de V2, la diffusion spatiale des indices de mouvement non-
ambigüs, la rétroaction d’autres couches neuronales, l’inhibition périphérique, des
mécanismes de winner-take-all, etc.

À partir de l’inspiration donnée par les résultats rapportés par Pack et al. (2004),
dans cette thèse, nous nous sommes demandés comment la suppression périphérique
est liée à la solution du problème d’ouverture. La suppression du poutour dans
les cellules de V1 a été implementée dans l’architecture séquentielle de V1-MT pro-
posée dans le cadre de cette thèse, et nous avons exploré l’effet de cette suppression
sur la direction préferée des neurones de MT. Ce mécanisme a été précédemment
reporté comme une possible solution au problème d’ouverture (Pack et al. (2004);
Huang et al. (2007); Tlapale et al. (2008)).

2.2 ORGANISATION ET PRINCIPALES CONTRIBUTIONS

Cette thèse est organisée en quatre parties (Figure 2.2):

• Première Partie: La perception du mouvement chez le mammifère. Dans
cette première partie nous résumons les études concernant le traitement de
l’information visuelle du mouvement chez le mammifère et comment les mécan-
ismes de vision ont été modélisés de manière classique en terme de détection et
traitement. Nous présentons aussi l’architecture séquentielle générale pour V1
et MT proposée et dévelopée dans cette thèse.

• Deuxième Partie: La reconnaissance d’actions. Nous montrons dans cette par-
tie l’état de l’art de cette problématique et proposons aussi deux différentes ap-
proches, créées à partir de l’architecture séquentielle génerale décrite dans la
première partie.

• Troisième Partie: Cette partie montre comment l’implémentation de la suppres-
sion périphérique dans les neurones de V1 peut être impliquée dans la résolu-
tion du problème d’ouverture.

• Finalement, la Quatrième Partie se groupe la conclusion, les perspectives et les
publications associées à ce travail.

Les principales contributions de cette thèse sont:

1. La proposition d’une architecture séquentielle bio-inspiré, générale, modélisant
les aires corticales V1 et MT.

2. Une analyse fréquentielle des détecteurs de mouvement sur V1. Cette anal-
yse montre la relation entre les différents paramètres et le réglage fréquentiel
spatio-temporel.
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Figure 2.2: Organisation de cette thèse et relation entre chapitres.

3. L’implémentation d’une architecture séquentielle analogue modélisant V1 et
MT pour être appliquée à une application réelle comme la reconnaissance
d’actions. Nous présentons une méthodologie pour le classement à partir de
l’analyse de la sortie analogique des neurones de MT. Nous mettons en évidence
l’importance de la diversité de périphéries dans les neurones de MT pour la
performance de la reconnaissance d’actions.

4. L’implémentation d’une architecture séquentielle évènementielle modélisant V1
et MT pour être appliquée à une application réelle comme la reconnaissance
d’actions. Nous avons considéré deux caractéristiques du codage neuronal: le
taux moyen de décharge de chaque neurone et la synchronie entre paires de
neurones. Deux motion maps sont donc définis, donnant une répresentation de
l’information du mouvement contenue dans le stimulus: mean motion map and
synchony motion map. Nous montrons que ces deux motion maps permettent de
réaliser avec succès la reconnaissance d’actions.

5. L’implémentation d’un mécanisme simple pour expliquer le changement de la
direction préferée d’un neurone de MT, et aussi, pour donner une solution à
l’intégration du mouvement.
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2.3 PLAN DETAILLÉ

Première Partie: La Perception du Mouvement chez le Mammifère

Le Chapitre 3 donne les principes de la compréhension du traitement d’information
visuelle reliée au mouvement chez le mammifère. Ce chapitre décrit aussi l’état de
l’art des études neurophysiologiques par rapport à la perception visuelle chez le mam-
mifère, en mettant l’accent sur V1, MT et MST. Ce cadre biologique sera la source
d’inspiration du dévelopement des modèles bio-inspirés pour le traitement du mou-
vement.

L’état de l’art de la détection de mouvement et de modèles bio-inspirées pour le
traitement du mouvement est décrit dans le Chapitre 4. Nous avons récapitulé les
techniques classiques en vision par ordinateur et en neurosciences computationelles
pour la detection du mouvement. En particulier, nous nous sommes focalisés sur les
méthodes qui ont inspiré le dévelopement de cette thèse.

A partir de l’information récapitulée dans les Chapitres 3 et 4, le Chapitre 5
décrit l’architecture séquentielle générale modélisant les aires corticales V1 et MT
proposée dans cette thèse pour le traitement du mouvement.

Deuxième Partie: La Reconnaissance d’Actions

L’état de l’art de la reconnaissance d’actions est décrit dans le Chapitre 6. Cet état
de l’art couvre les méthodes developées en vision par ordinateur et en neurosciences
computationnelles.

Afin de traiter le problème de la reconnaissance d’actions, nous avons étendu
l’architecture séquentielle générale proposée pour V1 et MT décrite dans le Chapitre
5 (Figure 2.3), et proposons comme contribution originale deux implementations.

• Chapitre 7: Implementation analogique. La sortie des détecteurs de mou-
vement basés sur l’énergie traverse une fonction non-linéaire pour obtenir une
estimation du taux de décharge des neurones de V1. La sortie des neurones
de V1 alimente un neurone de MT modelisé par un modèle neuronal à conduc-
tance. Selon la localisation spatiale des neurones de V1 dans le champ récepteur
du neurone de MT, le neurone de V1 peut apporter une conductance excitatrice
ou inhibitrice. Les valeurs des potentiels de membrane des neurones de MT
sont utilisés pour définir un vecteur de mouvement moyen (mean motion map)
qui répresente l’information de mouvement contenue dans la séquence d’entrée.
Ces mean motion maps sont utilisés pour la reconnaissance.

• Chapitre 8: Implémentation évènementielle. La sortie de détecteurs de
mouvement basés sur l’énergie alimente un neurone de V1 par un courant ex-
terne. Les neurones de V1 sont modelisés comme des neurones intègre-et-tire
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à fuite (LIF). Quand le potentiel de membrane d’un neurone de V1 atteint un
seuil, une impulsion spike est émise. Les trains de spikes obtenus à partir des
neurones de V1 alimentent un neurone de MT, évènementiel aussi, au travers
d’une conductance d’entrée. Selon la localisation spatialle des neurones de V1
dans le champ récepteur d’un neurone de MT, le neurone de V1 peut apporter
une conductance excitatrice ou inhibitrice. Les trains de spikes produits par les
neurones de MT sont utilisés pour définir deux cartes de mouvement motion
maps différents: carte de mouvement moyen (mean motion map) et carte de
synchronie (synchrony motion map). La contribution de chaque carte est éval-
uée dans la tâche de reconnaissance d’actions.

Figure 2.3: Reconnaissance d’actions. Deux implémentations pour la modélisation du flux de mouve-
ment sont examinées. Ces deux implémentations sont faites à partir de l’architecture générale de V1 et
MT, proposée dans le Chapitre 5.

Troisième Partie: L’Intégration du mouvement

Le Chapitre 9 explore le rôle de la suppression périphérique des neurones de V1
sur l’intégration du mouvement, ainsi que la résolution du problème d’ouverture. De
manière plus précise, nous nous demandons comment la suppression périphérique
des neurones de V1 peut affecter la direction préferée des neurones de MT.
L’architecture implémentée provient aussi de l’architecture générale de V1 et MT
présenté dans le Chapitre 5, et elle est montrée à la Figure 2.4. Nous donnons les
résultats des simulations faites pour plusieurs stimuli classiques en psychophysique,
comme les barberpoles et les plaids.
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Figure 2.4: Étude de l’effet de la suppression périphérique des neurones de V1 sur la solution du
problème d’ouverture.

Quatrième Partie: Conclusion

Le Chapitre 10 presente une large discussion autout les résultats obtenus dans ce
travail ainsi que nos perspectives.

Le Chapitre 12 indique les publications de l’auteur de cette thèse.
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Part I

Motion Perception in Mammals
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OVERVIEW

How motion information is processed in the visual system of mammals? The per-
ception of motion in the visual system involves many brain areas, which have been
widely studied along years. The main brain areas dedicated to motion analysis in
mammals are V1, MT/V5 and MST. V1 is the most studied area of the visual system
of mammals and we could say that it is the gate from visual sensory system to the
brain. V1 processes not only motion but also other visual characteristics, such as
shape, color and texture. MT and MST are apparently only motion sensitive and MT
can be easily called as "the motion brain area".

In both areas V1 and MT, neurophysiological studies have shown a high influence
of what is seen in the surround of their respective receptive fields. What is seen in
the surround clearly modulates the responses of V1 and MT neurons and also might
be related with the visual perception.

In this chapter we revisit the state of the art concerning the motion related areas
V1, MT and MST, describing what do we know about them in the motion processing
context and also how the surround information influences the V1 and MT cells’ re-
sponse. The concepts here described will be used in the next chapters of this thesis
for our V1-MT model implementation.

Keywords: V1, MT, MST, motion perception, motion processing, early vision, clas-
sical receptive field (CRF), center-surround interactions, surround suppression.

Organization of this chapter:
This chapter is organized as follows. Section 3.1 describes the state of the art of

neurophysiological studies of V1 regarding motion processing and also the different
surround interactions. Analogously, Section 3.2 shows the state of the art of MT
neurons together with their surround interactions. Finally, Section 3.3 describes a
brief state of the art of MST visual area.
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3.1 V1: EARLY MOTION ANALYSIS

Located in the occipital lobe, the primary visual cortex V1 (also known as area 17
or striate cortex) is far the most studied visual area of primates. It is ambitious to
propose a general state of the art which renders the hundreds of works studying all
its different aspects. So, considering only the interesting aspects for this thesis, which
is motion processing, this brief review will include the main functional properties of
V1 regarding motion processing and center-surround interactions.

V1 is the first visual area processing the visual information coming from the
retina and passing through the lateral geniculate nucleus (LGN). It is divided into
six different functional layers, from layer 1 up to layer 6. Inputs coming from the
LGN are received by layer 4. The magnocellular input from the LGN is received
by Layer 4Cα, while the parvocellular inputs are received by layer 4Cβ. This fact
inspired the idea of two different cortical system to process the visual information
(Ungerleider and Mishkin (1982); Goodale and Milner (1992); Milner and Goodale
(2008)): one specialized in motion perception located at the parietal lobe (dorsal
stream concerning V1, V2, MT, MST, LIP, VIP and PP), and one specialized in form
perception located at temporal lobe (ventral stream concerning V1, V2, V4, PIT or
TEO, AIT or TE). This simplified structure is pedagogically convenient but it has
been widely criticized (see e.g., Van Essen and Gallant (1994); Milner and Goodale
(2008)).

Differing from the retina and LGNs whose receptive fields have round shapes,
the receptive fields of V1 simple cells have elongated shapes. They are supposed
to be built from thalamocortical afferents (Hubel and Wiesel (1962); Chapman et al.
(1991); Alonso et al. (2001); De Valois et al. (2000)) and intracortical process of am-
plification and/or inhibition (Ferstner and Miller, 2000). Two main ideas have been
proposed to understand how the elongated receptive fields are formed:

1. The cortical receptive fields are simply cortical manifestations of the centers
and surrounds of receptive fields of retinal neurons.

2. The cortical receptive fields are a combination of inputs from separated sets of
receptive fields whose centers have opposite polarity.

The work done by Kara and Reid (2003) have shown that cortical subfields are formed
from the centers of retinal receptive fields (see Figure 3.1).

Motion is processed by direction-selectivity neurons, but how are the inputs of
these neurons? Classically, the M and P pathways coming from the LGN, differed in
space and time, are required to create direction selectivity. The P pathway has recep-
tive field with sustained response, while the M pathway has receptive fields with a
transient response and differs from the P pathway in temporal phase by about a quar-
ter cycle. This characteristics suggest that combining these two streams could lead
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Figure 3.1: The pathway from an individual retinal output neuron (retinal ganglion cell (RGC)) to the
cortex involves divergence in the LGN through multiple pathways of different strengths (indicated by
the thickness of lines; dashed lines indicate unknown strength), which could re-converge in the cortex,
specifically in V1 (Image taken from Derrington and Webb (2004), adapted from Kara and Reid (2003)).

direction selectivity. In fact, De Valois et al. (2000) stated that direction-selectivity
of simple cells can be decomposed into a fast, temporally biphasic, spatially even
symmetric component and a slower, temporally monophasic, spatially odd symmetric
component. This decomposition can give an idea of how the direction-selectivity prop-
erty is formed. Livingstone and Conway (2003) found similar receptive field maps
than De Valois et al. (2000), but they suggest that the slow component comes from a
delayed offset inhibition rather than the slow parvocellular pathway. The later work
of Saul et al. (2005) hypothesizes that not only the M and P pathways by separated
contribute to create the direction-selectivity property, but a combination of both.

3.1.1 Simple and complex cells

“Indeed, all that may distinguish many complex cells from simple cells might just be
the strength of the inhibitory signals that mask inherently nonlinear summations...”
–Carandini et al. (2005)

The seminal work of Hubel and Wiesel (1960, 1962) studied and classified V1 neu-
rons into two groups: simple cells and complex cells. These cells react to stimuli
placed at a certain region of the visual field (around 1◦ of diameter) and they are sen-
sible to the luminance or contrast of the stimuli. Hubel and Wiesel (1962) discovered
that these cells’ receptive fields are made up of elongated and antagonistic zones (see
Figure 3.2). Depending of the sign of each zone, they sum the light falling on it to
generate excitatory or inhibitory contributions to the cell activation.

According to Hubel and Wiesel (1962), a V1 simple cell is a cell who accomplishes
these four conditions:

1. It can be divided into distinct excitatory and inhibitory regions.

2. The information inside the excitatory and inhibitory regions is summed.
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3. There is antagonism between excitatory and inhibitory regions.

4. It is possible to predict responses to stationary or moving spots of various shapes
from a map of the excitatory and inhibitory areas.

If a cell failed in at least one of these conditions, it is straight classified as a com-
plex cell. As a corollary of this definition, we can say that in simple cells excitatory
and inhibitory responses are spatially separated and mutually antagonistic. By the
contrary, in complex cells the excitatory and inhibitory regions overlaps and are not
mutually antagonistic (see Figure 3.2).

Since Hubel and Wiesel (1962), additional properties of simple and complex cells
have been found refining their definitions. For example, Conway and Livingstone
(2003) stated that simple cells space-time maps have an overall slant, while complex
cells showed space-time maps not clearly slanted. Complex cells have higher firing
rate than simple cells. Complex cell response is more transient than the simple cell
response.

Although complex cells are also oriented selective, it is evident that this selectivity
cannot be deduced from conventional receptive fields maps (Conway and Livingstone
(2003); Deangelis and Akiyuki (2004)). In the complex cell receptive field maps bright
and dark responsive regions overlap almost completely in the spatiotemporal domain,
and no distinct regions are visible (see Figure 3.2 C). Using a nonlinear map, built
with 2-dimensional white noise, it is possible to predict the direction selectivity of V1
complex cells, whereas their linear maps do not (Deangelis and Akiyuki (2004)).

Studies in the literature suggest that complex cells are built by the nonlinear
combination of subunits, e.g., simple cells (Hubel and Wiesel (1962); Movshon et al.
(1978); Emerson et al. (1987); De Valois et al. (2000); Pack et al. (2006)).

Using reverse correlation, De Valois et al. (2000) characterized the shape of the
receptive fields of directionally and non-directionally oriented V1 simple cells (see
Figure 3.4). Different maps for V1 simple and complex cells were also measured by
Conway and Livingstone (2003) and Pack et al. (2006). The shape of the receptive
fields of V1 simple cells can be typically modeled by Gabor functions. Specifically,
Ringach (2002) showed that Gabor can provide a representation for the receptive
fields of V1 simple cells measured in monkeys (see Figure 3.3). Pack et al. (2006)
found similarities between the receptive field maps of V1 complex cells and MT sug-
gesting that MT receptive fields are primarily built by summing the outputs of V1
complex cells sharing a common preferred direction.

Regarding the spatiotemporal frequency and speed tuning of V1 simple and com-
plex cells, Priebe et al. (2006) measured the response of direction-selectivity V1 sim-
ple and complex cells of anesthetized, paralyzed macaque monkeys. The direction-
selectivity of V1 simple cells showed separable tuning for spatial and temporal fre-
quencies, while V1 direction-selectivity complex cells showed the same speed tuning
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Figure 3.2: Receptive fields structure of LGN, simple and complex V1 neurons in cats. A, Schematic
and empirical receptive field of a LGN neuron from cat. It has a central ON region (+) surrounded by an
OFF region (-). Solid and dashed regions represent regions in the visual space where the cell responds
to bright or dark spots, respectively. B, Schematic and empirical receptive field of a V1 simple cell,
which its receptive field consists of alternating elongated subregions that are responsive to bright (+)
or dark (-) visual stimuli. C, Schematic and empirical receptive field of a V1 complex cell. This type
of cell responds to both bright and dark stimuli anywhere inside its receptive field (Image taken from
Deangelis and Akiyuki (2004)).
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Figure 3.3: Two-dimensional Gabor functions fitting V1 simple cell data. First row shows examples
of receptive fields measured for V1 simple cells. Second row shows the best Gabor fit in the least square
sense, showing that Gabor functions can represent the shape of V1 receptive fields (Image adapted from
Ringach (2002)).

Figure 3.4: Examples of the spatiotemporal receptive fields of two non-directionally-selective V1
simple cells (A, B), and two directionally-selective V1 simple cells (C, D) (image adapted from
De Valois et al. (2000)).
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properties found in area MT (see Priebe et al. (2003)). Concerning V1 complex cells,
the cells measured can be classified as: ∼25% with separable responses to spatial
and temporal frequencies, ∼25% speed-tuned neurons with a preferred speed that
does not depends on the spatial frequency, ∼50% between these two extremes.

An important nonlinear effect seen in V1 neurons is the cross-orientation sup-
pression (COS). The V1 neuron response to an optimally stimulus is inhibited if an
orthogonal stimulus is superimposed (transparency). This orthogonal stimulus does
not elicit a neural response if it is presented alone. Studies in cats (Morrone et al.
(1982)) showed this effect using two superimposed drifting gratings. This type of in-
hibition is typically stronger in simple than complex cells. They also showed that this
effect is not only cross-oriented, because not only the orthogonal orientation but all
orientations outside the cell’s tuning band have a comparable inhibitory effect. This
last effect suggests that this type of inhibition comes from not only a single cell but a
population of cells. Regarding possible origins of the COS, Li et al. (2006) stated that
nonlinearities in the LGNs, such as, spike rectification and contrast saturation plus
a spike output nonlinearity in the visual cortex could explain the COS effect.

3.1.2 Center-surround interactions

Receptive fields of V1 neurons can be decomposed into a classical receptive field
(CRF), in which stimuli directly elicit the discharge of the neuron, and a large sur-
rounding area beyond the CRF, in which stimuli elicit no response by their own
but they can profoundly modulate the CRF-driven response, normally suppressing
it (Jones et al. (2001)).

The majority of V1 simple and complex cells have surround suppression. In anes-
thetized monkeys, Jones et al. (2001) found that 94% of measured cells exhibited sur-
round suppression with a mean suppression of 67%, and 43% of cells exhibited a
suppression greater than 70%. They also showed that the surround modulation is
not always suppressive, and that the 78% of their studied cells were sensitive to the
direction of motion of the surround. Within these cells two groups were detected:

• A direction-contrast-dependent group (41%) where the suppression was of 70%
if the direction of motion of the surround was iso-oriented compared to the CRF,
and of 22% if the direction of motion of the surround was reversed compared to
the CRF.

• A direction-contrast-driven facilitation group (37%) where a suppression of 28%
was detected if the direction of motion of the surround was iso-oriented to the
CRF. If the motion of the surround was reversed compared to the CRF, a facili-
tation of 74% was detected.

Apparently, there is no laminar variation in the cells showing surround suppres-
sion (Walker et al. (1999); Jones et al. (2001)). Also, the surround suppression be-
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tween simple and complex V1 cells is not significantly different (Sceniak et al. (2001);
Bair et al. (2003); Webb et al. (2005)).

Following in part the schema presented by Series (2002) in her thesis and
Series et al. (2003), we will next describe the state of the art of the surround sup-
pression phenomenon in V1 neurons.

Size and geometry of surround

The size of the surround depends on species. In monkeys, Sceniak et al. (2001) mea-
sured the size of the surround zone as 2.2 times the size of the CRF. Similarly,
Angelucci et al. (2002) found the average size of the surround zone to be 4 times
the size of the CRF. In cats, Li and Li (1994) found that the 70% of measured cells
presented a maximal suppression for surrounding zones of ∼2-5 times the size of the
CRF, the resting 25% of cells exhibited maximal suppression for suppression zones
up to 5 times the size of the CRF.

The surround suppression zone is far to be uniform. Walker et al. (1999) in anes-
thetized cats found that most of cells with surround suppression have spatially asym-
metric surrounds. More in details, the study of Jones et al. (2001) in monkeys showed
that only the 19% of the measured cells exhibited a uniform surround suppression.
The remaining 81% of cells have either spatially asymmetric surround suppression
(44%) or bilateral symmetric surround suppression (37%). Within the surround ar-
eas, the suppression is nearly equally distributed, which is contrary to the findings
of Walker et al. (1999) in cats, where the suppression has a slight bias to occur at the
end zones of the CRF.

Recently, Tanaka and Ohzawa (2009) studied detailed spatial structures of classi-
cal center and surround regions of V1 receptive fields. They found that center and
surround regions are often both elongated parallel to each other, showing a wide
range of orientations and widths.

Response latencies and origins

Bair et al. (2003) measured in monkeys that the latency of the suppression effect de-
pends on the suppression strength and it varies systematically across cells. Strong
suppression arrived on average ∼30ms earlier than weak suppression, and sup-
pression sometimes arrives faster than the excitatory CRF responses. The delay
of surround suppression with respect to the CRF excitation has been reported to a
range from 15 to 60ms. They detected two different mechanisms: an early suppres-
sive mechanism (prominent at lower CRF contrasts, spatiotemporally broadband and
monocularly driven) and a late suppressive mechanism (CRF driven by high contrast
stimuli, sharp spatiotemporal tuning and binocularly driven).

In cats, Walker et al. (1999) showed that the CRF has a short latency to response
onset (∼20ms), a peak response around the 50ms followed by a sharp decayment in
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Table 3.1: Average spatial and temporal frequencies measured by Webb et al. (2005) for the CRF and
the surround zone of a population of V1 neurons. The temporal frequency response of the surround is
almost flat inside the measured range.

CRF Surround
Average spatial frequency 2.98[cycles/degree] 1.35[cycles/degree]
Average temporal frequency 4.99[Hz] 9.23[Hz]

the response. On the contrary, the surround exhibited a short latency (∼30ms), a peak
suppression response near 60ms and then the suppression response is sustained and
remains observable until 150ms.

The origin of surround suppression remains unknown. Most of the theories about
its origin are mainly based in the latency studies mentioned in the previous para-
graphs. Considering latency studies, Smith (2006) has proposed three different ori-
gins:

1. Long-range lateral or horizontal connections within V1 (Angelucci and Bullier
(2002)).

2. Feedbacks from higher cortical areas due to the slow dynamics of surround
suppression and the lack of strong dependence on cortical distance (Bair et al.
(2003); Angelucci and Bullier (2003); Schwabe et al. (2006)).

3. Activation of surround suppression in the lateral geniculate nucleus (LGN)
which leads to reduce excitatory drive to V1 (Webb et al. (2005)).

Spatiotemporal surround tuning

The spatiotemporal tuning of the suppression zones surrounding the CRF are similar
to the cell’s excitatory center tuning but broader (Sceniak et al. (2001); Webb et al.
(2005)). In particular, Webb et al. (2005) found that the suppression is relatively
indifferent to the orientation of the grating of the surround, particularly when the
surround was driven by high temporal frequencies and when the CRF was stimulated
by gratings at low contrasts. The average spatial and temporal frequencies preferred
for the CRF and the surround in the population of cells measured by Webb et al.
(2005) can be seen in Table 3.1. Levitt and Lund (1997) showed that the orientation
selectivity of the surround is less sensitive when the CRF is driven by low contrast
stimuli. In cats, Walker et al. (1999) found that the minimal suppression was
obtained when the surround was orthogonal to the preferred orientation of the CRF.

See later: In Chapter 9 we model V1 center-surround interactions and we show how this mechanism

can be used to solve the aperture problem. �
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Contrast dependency

Levitt and Lund (1997) and Sceniak et al. (1999) found that the effect of the surround
in the cell activity depends on contrast, for instance, identical stimulus configuration
could elicit facilitatory or suppressive center-surround interactions depending on the
contrast of the central stimulus. Levitt and Lund (1997) also found that the particu-
lar surround stimulus that produced the larger effect remained invariant with center
contrast.

Not only the type of the center-surround interaction changes with contrast. More
recently, Sceniak et al. (2002) showed that cells with contrast-dependent changes in
spatial summation also have a spatial frequency tuning depending on stimulus con-
trast. Sceniak et al. (2002) also showed that reduction of stimulus contrast causes
significant sharpening of spatial frequency selectivity. Lately, Walker et al. (1999)
and Webb et al. (2005) have shown that the surround suppression monotonically in-
creases with increased surround contrast.

3.2 MT: THE MIDDLE TEMPORAL AREA

The middle temporal visual area (MT or V5) of the macaque monkey is an extras-
tiate visual area in which most cells are selective for the direction of motion stimulus
(Movshon and Newsome (1996)).

3.2.1 Organization and connectivity

MT is retinotopically organized with an emphasis in the fovea, where the half of MT
surface is dedicated to the processing of the central 15◦ of the visual field. The size
of the receptive fields increases with the eccentricity and it also depends on contrast
(Pack et al. (2005)). At a given eccentricity, the MT receptive fields are about 6 to 10
times larger than those in V1 (Churchland et al. (2005)). Figure 3.5 shows the sizes
of V1 and MT receptive fields depending on the eccentricity.

MT has been always associated with the dorsal stream assuming most of its input
coming from the LGN magnocellular (M) pathway. But anatomical and functional
studies have proved that the early parallel visual pathways (magnocellular (M) and
parvocellular (P)) converge significantly onto both dorsal and ventral cortical areas.
In the case of MT, M and P pathways are present. P connections from LGN are only
two synapses away and they probably come from V2. Still, M connections are the
major ascending inputs which arrive through V1 (Nassi and Callaway (2006)).

Regarding inter cortical areas connections, MT receives inputs from many ar-
eas, such as V1, V2, V3, V3A, VP and PIP. A schema with the connections be-
tween different cortical areas is shown in Figure 3.6 (Felleman and Van Essen (1991);
Born and Bradley (2005)). The 90% of the connections coming from V1 are from layer
4B (the remaining 10% connections are from layers 5 and 6), and are a majority spiny
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Figure 3.5: Relationship between the receptive field sizes of V1 and MT neurons versus the eccen-
tricity. The values shown for V1 were obtained using psychophysics (Mestre et al. (2001)). The straight
lines for V1 and MT were obtained from Dow et al. (1981) and Albright and Desimone (1987), respec-
tively.

stellate cells with large cell bodies which are specialized for a fast transmission of in-
formation from the M pathway (Nassi and Callaway (2007)).

MT has also reciprocal connections with, for example the medial superior tem-
poral area (MST), the ventral intraparietal area (VIP) and the generation of eye
movements (e.g., 7a, lateral intraparietal area LIP, frontal eye field FEF, SC)
(Maunsell and Van Essen (1983)). Additionally, Zaksas and Pasternak (2005) have
shown that MT cells are activated by the presence of stimulus outside their recep-
tive fields. This response is affected by the motion direction and the coherence of the
motion stimuli and it has long latencies compared with conventional responses of MT
cells. Their study suggests feedbacks from upper layers to higher mechanisms as e.g.,
attention.

3.2.2 Direction and speed selectivity

All MT cells are highly directionally-selective compared to V1 cells (Churchland et al.
(2005)). Both V1 and MT layers have direction tuned neurons, but MT shows a
strong inhibition in the anti-preferred direction. The proportion of directionally-
selective responses is 30% in V1 and 92% in MT (Albright (1984); Snowden et al.
(1991); Lagae et al. (1993)). Regarding how the MT direction-selectivity property can
be created, Pack et al. (2006) found similarities between the receptive field maps of
V1 complex cells and MT suggesting that MT receptive fields are primarily built by
summing the outputs of V1 complex cells sharing a common preferred direction. It
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Figure 3.6: Diagram summarizing the MT input connectivity. The magnitude of inputs are directly
related with line thickness (diagram taken from Felleman and Van Essen (1991)).
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has been also shown that the preferred direction of a MT cell depends on the input
stimulus and it evolves in time (see Section 3.2.4).

Regarding speed selectivity, Mikami et al. (1986) and Churchland et al. (2005)
coincided that MT neurons tend to have higher preferred speeds compared to V1.
Churchland et al. (2005) reported, for awake monkeys, a mean of 27◦/s for MT neu-
rons, while V1 neurons only have a mean of 11◦/s. In anesthetized and paralyzed
macaque monkeys, Priebe et al. (2006) reported a mean speed of 7.52◦/s for MT neu-
rons and a mean speed of 4.47◦/s for V1 neurons, and the authors also showed an over-
lapping in the range of V1 and MT preferred speeds (V1: 0.3→43◦/s, MT:0.4→80◦/s).

Some MT cells are also tuned to speed (Maunsell and Essen (1983); Lagae et al.
(1993)) 1. The speed-tuned neurons are motion-sensitive cells invariant to the spatial
frequency of the input stimulus and their spectral receptive fields are oriented rela-
tive to the temporal and spatial frequency axes (see Figure 3.7). Perrone and Thiele
(2001) showed that a large proportion of the MT neurons tested had oriented insep-
arable spectral receptive fields (speed-tuned neurons). On the contrary, Priebe et al.
(2003) found that only a small proportion of the tested cells are velocity-tuned neu-
rons (27% of cells). In order to explain this difference with the previous study of
Perrone and Thiele (2001), the authors suggest that this difference is due to the cri-
teria used to assign neurons to the speed-tuned class.

Remark: In the human brain, the spatial frequency plays an important role in speed perception.

Psychophysics experiments have demonstrated that the perception of speed is influenced by the spatial

frequency of the input stimulus. Low spatial frequencies bias human perception to faster speeds (e.g.,

Smith and Edgar (1990)). �

Priebe et al. (2003) also showed that the speed-tuning property of a MT neuron
can also change with the contrast and the type of the input stimulus. Low contrast
biases neurons from speed-tuning toward spatiotemporal independence, without al-
tering the preferred spatial and temporal frequencies of each neuron. The type of
stimulus also biased the MT responses, in the case of, e.g., square-wave gratings in-
stead of sine-wave gratings, the responses of MT neurons were more speed-tuned.

The proportion of MT and V1 cells tuned for a certain speed highly differs.
Lagae et al. (1993) compared the speed profiles of MT and V1 neurons for small ec-
centricities. They found that about 80% of V1 cells are low-pass cells while in MT is
only the 55%, where ∼20% of MT cells were tuned for a higher speed. In the case
of MT, the tuning properties of neurons change with the eccentricity. In small eccen-
tricities tuned MT cells are tuned for middle range of speed (2-64 deg/s), in bigger
eccentricities the range of optimal speeds is narrowed, which is consistent with the
human perception measured by Orban et al. (1985).

1Some speed-tuned neurons can be also found in V1 complex cells, see Section 3.1.1
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Figure 3.7: Two different models representing motion-sensitive neural responses (from Priebe et al.
(2003)). A and B are motion filters where the speed tuning depends on the spatial frequency of the
drifting gratings used as input stimulus. D and E are motion filter with a speed tuning independent of
the spatial frequency.
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3.2.3 MT surround interactions

The activation of the classical receptive field (CRF) of a MT cell is modulated by its
surround. Those surrounds can be classified according to their geometry (symmetric,
asymmetric) or according to the type of modulation (antagonistic or integrative). In
this section we present the main characteristics.

See later: In Chapters 7 and 8 we will show that taking into account this diversity into com-

putational models, can provide substantial improvements in our application. �

Surround geometries

Different kinds of surround geometry of MT receptive fields are observed in the com-
putation of structure of motion (see Figure 3.8). Half of MT neurons have asymmetric
receptive fields introducing anisotropies in the processing of the spatial information
(Lui et al. (2007)). The second half of the population examined by Xiao et al. (1997b)
has two different symmetries: circular symmetry surround (20% of the population)
and bilaterally symmetric surrounds, which correspond to a pair of surrounding re-
gions on opposite sides. The neurons with asymmetric receptive fields seem to be
involved in the encoding of important surfaces features, such as slant and tilt or cur-
vature (Buracas and Albright (1996)).

Figure 3.8: Geometries of asymmetric center-surround organization in MT cells (Xiao et al. (1997b,a))
(a) Circularly symmetric surrounds. (b) Asymmetric configuration concentrating the suppression at one
side of the motion preferred axis. (c) Bilaterally symmetric zones of suppression lying in the motion
preferred axis.

Surround types of modulation

Regardless the geometry of the MT receptive fields, they can be also classified ac-
cording to the type of center-surround interaction as: integrative (for a facilitatory
interaction) and antagonistic (for a suppressive interaction). The direction tuning
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of the surround is broader than that of the center, and the preferred direction, with
respect to that of the center, tended to be either in the same or opposite direction
and rarely in orthogonal directions (Born (2000)). A diagram with the types of cen-
ter surround interactions and their respective percentage in the neuron population
studied by Born (2000) is shown in Figure 3.9. The antagonistic surrounds are insen-
sitive to wide-field motion but very sensitive to local motion contrast. Otherwise, the
integrative surrounds have better response to wide-field motion.

Figure 3.9: Typical interactions between the classical receptive field and its surround found by Born
(2000). The surround can be either integrative ((a), (b) and (c)) or suppressive ((d), (e) and (f)). The
preferred direction of the surround compared to the direction of the classical receptive field can be the
same (a)-(d), opposite (b)-(e) and rarely orthogonal (c)-(f).

The interactions between center and surround can vary depending on the contrast
and the type of visual stimulus (random dots, plaids, bars, etc.). Low contrasts induce
an integrative surround, while high contrasts an antagonistic surround (Born (2000)).
Trying different types of visual stimulus, Huang et al. (2007, 2008) showed that the
surround can be integrative if the motion information contained inside the classi-
cal receptive field of the MT cell is ambiguous (aperture problem). On the contrary,
the surround acts as a segmentation (antagonistic surround) if the motion direction
perceived inside the classical receptive field is solved.

3.2.4 Preferred direction of MT cells

The preferred direction (PD) of a MT cell has been generally measured through a
drifting grating, where most of the times the cell shows a clear direction selectivity.
However, the behavior of a MT neuron highly depends on the input stimulus, the
contextual information and time. This dependency changes the type of surround
modulation, as it was mentioned in Section 3.2.3, and therefore, the PD of a MT
cell.

37



Time dependency of MT preferred direction

Several studies, such as Pack and Born (2001); Pack et al. (2004) and Born et al.
(2006) showed that the PD can be modified depending on the input stimulus. Specif-
ically, Pack et al. (2004) showed that the PD measured using barberpoles instead of
grating is biased toward perception, i.e., the side of the barberpole with the longest
side. This PD deviation, compared to the one measured drifting grating, depends on
the aspect ratio of the barberpole (see Figure 3.10).

Figure 3.10: Response of a MT cell to a drifting grating (a) and to a barberpole (b)-(c)-(d)-(e) with
different orientations (image taken from Pack et al. (2004)). The preferred direction (PD) of a MT cell
measured with gratings is shown in (a). (b)-(c)-(d)-(e) show how the PD of the MT cell moves from a sim-
ilar value than the one measured with drifting gratings (early) towards a value related with perception
(late).

Evidence of microelectronic recordings in MT of alert monkey reveal that during
the first 80ms after the onset stimulus the response is strongly biased by 1D motion,
i.e., the direction defined by the orthogonal direction to the contours, but lately the 2D
motion direction is encoded. These experiments suggest that the aperture problem is
solved within the first 100ms of the onset stimulus (Pack and Born (2001)).

The mechanisms underlying the PD deviation of a MT cell are unknown. It looks
like that the primate visual system initially considers all the information available
(ambiguous and unambiguous), and that along time, it refines it in order to solve
the aperture problem. This convergence in time can be associated to different and
complex neural networks which convey information coming from other areas of the
visual system as feedbacks (Berzhanskaya et al. (2007)) or horizontal connections.
This phenomenon is also associated to the contribution of terminators or end-points
in different areas of the visual field such as V2 or V1 (Berzhanskaya et al. (2007);
Bayerl and Neumann (2007); Pack et al. (2003)) which should require slightly longer
latencies.
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See later: In Chapter 9 we will study the effect of V1 surround inhibition in the PD of MT

cells. �

Another example of how the response of a MT cell changes with the input stimu-
lus is the work done by Huang et al. (2007, 2008) who showed that surround modu-
lation in area MT can be either antagonistic or integrative depending on the visual
stimulus context, changing by this way the perceptual interpretation of the input
stimuli. Most of the previous experiments performed on MT surround interactions
found that surround inhibits the activation of the classical receptive field (CRF) (an-
tagonistic surround, e.g., Xiao et al. (1997b)). But, Huang et al. found that only the
motion information coming from the same object induces integration. Motion signals
coming from different objects should be segregated to achieve segmentation. The sur-
round integration previously reported by Born (2000) in owl monkeys is not the same
case. The directional reinforcement is not surround modulation, because it induced
responses even in the absence of the stimuli in the CRF.

Pattern and component cells

Comparing the preferred direction of MT neurons for gratings and plaids, it is pos-
sible to classify them as pattern direction selective (PDS) or component direction se-
lective (CDS). The PDS neurons have a unimodal response for plaids, while the CDS
neurons show a bimodal response indicating the two directions of the gratings con-
forming the plaid stimulus (see Figure 3.11). The response of a PDS cell to a plaid
is generally quite different from the sum of its responses to the individual gratings
alone.

Figure 3.11: Figure shows typical responses of MT cells to drifting gratings (a) and plaids (b). The
MT cell response for a plaid stimulus (b) could be either sensitive to the true direction of motion (PDS
cell, black dashed lines) or sensitive of the components conforming the plaid (CDS cell, red lines).

The fact that the time response of CDS neurons is faster (about 6ms) than PDS
neurons (about 50-75ms), suggests a two-stage model for MT, where the outputs of the
CDS neurons are used as inputs of the PDS (Movshon et al. (1986)). The selectivity
of a PDS cells evolves during the first 100-150 ms after the exposition of a complex
stimulus as plaid (Smith et al. (2005)), starting with a broader selectivity resembling
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CDS cells. After some tens of milliseconds, their responses evolve to be more PDS-
like.

On the other hand, CDS cells give a stable response as soon as the stimulus is set.
A diagram of the evolution of cells along time can be found in Figure 3.12. The propor-
tion of cells belonging to PDS or CDS found by Smith et al. (2005), for anesthetized
monkeys, is ∼41% for CDS, ∼25% for PDS and ∼34% unclassified. These values are
similar with the ones found in awake (Stoner and Albright (1992)) and anesthetized
(Rodman and Albright (1989); Priebe et al. (2003)) monkeys using the same stimuli.

Figure 3.12: Red dots represent PDS cells, blue dots represent CDS cells and black dots represent
cells which are not classified. Three areas are represented in the diagram, labeled as Pattern, Com-
ponent and Unclassified. The figures shows the evolution of the cell classification over time with a
cumulative window starting at 30-50 ms and finishing at 30-110 ms. It is possible see than CDS cells
are classified sooner than PDS cells (from Smith et al. (2005))..

Is the pattern-motion computation (PDS cells) done locally or globally inside the
MT receptive field? Majaj et al. (2007) asked whether MT cells just pooled informa-
tion from V1 neurons treating this input information as a single object. They found
that an important computation of the PDS mechanism is done locally inside small
patches of the MT receptive field (in a finer scale than the whole MT receptive field),
suggesting that spatial coincidence of the components of a moving object is required.
In Perrone and Krauzlis (2008), a MT model is proposed to explain this phenomenon.
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Figure 3.13: Receptive field size of MT neurons and MSTd neurons sensitive to planar motion. The
square root of the excitatory area of the receptive field is plotted versus the eccentricity (image taken
from Tanaka et al. (1986)) .

3.3 MST: THE MEDIAL SUPERIOR TEMPORAL AREA

MST is above to MT in the visual motion hierarchy. MST receives connections
mainly from MT (Maunsell and Van Essen (1983)) and, equally to MT, it is located at
the superior temporal sulcus (STS).

MST has at least two main divisions:

• MSTd: dorsal part localized in the anterior bank of the STS with large recep-
tive fields. Neurons in this region are directionally-selective for moving visual
stimuli responding to flow-field stimuli as (Saito et al. (1986)): rotation, radial
(expansion/contraction) and planar motion (see Figure 3.14). Cells in this area
have large receptive fields irrespective of the eccentricity (see Figure 3.13) with
a mean value of 41◦ (Tanaka et al. (1986)).

• MSTl: ventral-lateral region of the medial superior temporal area with
small receptive fields similar to MT size. These neurons are impor-
tant for the self-motion compensation and smooth pursuit eye movements
(Churchland and Lisberger (2005); Inaba et al. (2007); Ilg (2008)).

In MSTd, originally Saito et al. (1986) and Tanaka and Saito (1989) found three
classes of directionally selective cells, each of them responding for a certain flow-
motion pattern: planar motion (51%), radial motion (16%) and rotation (14%). Lately,
Duffy and Wurtz (1991) showed that neurons in MSTd are able to combine the differ-
ent motion patterns finding that neurons responding only to one flow-motion pattern
were only the 23% of the population studied. The remaining 34% and 29% responded
to two components (plano-circular or plano-radial but never circulo-radial) and three
components, respectively.
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Figure 3.14: Different flow-field patterns detected by MSTd cells. (a) planar motion, (b) radial motion
(expansion represented) and (c) rotation motion (clockwise direction represented).

In order to better characterize MSTd neurons, several studies combining differ-
ent motion aspects have been done. Graziano et al. (1994) found that many MSTd
neurons are preferentially selective to spiral motion. They also found that MSTd
cells selectivity is maintained inside its large receptive field. By the other hand,
Geesaman and Andersen (1996) asked whether the direction tuning of MSTd neurons
is form/cue invariant inside its receptive fields. The experiments were performed us-
ing coherently moving random dots, solid squares, outlines of squares and squares of
stationary random dots. These experiments did not revealed a significant variance in
the direction tuning of MSTd neurons. Studies done by Duffy and Wurtz (1997) also
showed that changes in the gradient of speed of the flow-field patterns (slower speed
at the center and faster speed in the periphery) highly alters the response of MSTd
neurons.

Regarding latencies, Kawano et al. (1994) used large field random dot patterns
to measure the response latencies of MST neurons. They found that 80% of neurons
were activated during the first 50ms after the stimulus onset. They also measured the
latency of ocular responses finding that both neuronal and ocular responses decreased
as stimulus speed increased. The time differences between neuronal response and
ocular response varied little with stimulus speed.
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CHAPTER 4

MOTION MODELS

“I can calculate the motion of heavenly bodies, but not the madness of people.”
–Isaac Newton (1643-1727)
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OVERVIEW

Along years many models of motion processing have been proposed in several com-
munities such as computer vision or neuroscience. Most of the bio-inspired models
proposed attempted to understand the role and interactions between the different
brain areas involved in visual motion processing. Within the bio-inspired methods,
just a few have been proposed in order to be also applied in real applications.

The first part of this chapter will introduce the main motion detection techniques
which are the first step of any motion model. The motion detection techniques can
be divided into three main categories: differential methods, frequency-based methods
and region-based matching methods. Considering our contribution, we will focus here
on the first two categories..

The second part of this chapter summarizes the bio-inspired motion models
present in the literature, such as e.g., Bayerl and Neumann (2004), Grossberg et al.
(2001), Perrone (2004), Simoncelli and Heeger (1998) or Nowlan and Sejnowski
(1994)-Nowlan and Sejnowski (1995).

Keywords: motion detection, optical flow, spatiotemporal filtering, motion models,
V1, MT.

Organization of this chapter:
This chapter is organized as follows: Section 4.1 describes the different family of

approaches proposed for motion detection. Within them, two are described in de-
tail: differential techniques (Section 4.1.2), and frequency-based methods (Section
4.1.3). Section 4.2 reviews the motion models inspiring the development of this the-
sis, grouping them into: feedforward models (Section 4.2.2) and recurrent models
(Section 4.2.3).
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4.1 MOTION DETECTION

4.1.1 Three main categories

Motion detection in video sequences has been widely studied since the last 20 years
by different communities, such as, computer vision, robotics, biological vision, signal
processing, etc. All the techniques present in the literature can be divided into three
maincategories (Simoncelli (1993); Barron et al. (1994)):

1. Differential techniques: Also known as "gradient" techniques, estimate the
optical flow vectors from the derivatives of image intensity over space and time.

2. Frequency-based methods: The most important category in the development
of this thesis. These methods are based on spatiotemporal oriented filters and
motion is treated in the frequency space. These frequency-based filters are also
divided into two other categories: energy-based filters and phase-based filters.

3. Region-based matching: These techniques attempt to match "features"
(small regions of the image) from frame to frame. The matching criterion is
usually least squares or normalized correlation measure.

In the rest of this chapter, we will comment further the first two categories (see
Borst (2007) for a comparative study). The latter one, namely the region-based tech-
niques, will not be considered because its conception is far from biological plausibility.

4.1.2 Differential techniques

Differential techniques operate over the assumption that the intensity of the image is
preserved over time (brightness change constraint). Changes in image intensity are
only due to translation of the local image intensity and not to changes in lightning,
contrast, etc. Under this assumption, the derivative of the image intensity L(x, t)
with respect to time t must be zero for each point x(t) = (x(t), y(t)) along its trajectory
t, i.e.

dL(x(t), t)
dt

= 0. (4.1)

Deriving equation (4.1) gives

∂L

∂x
vx +

∂L

∂y
vy +

∂L

∂t
= 0, (4.2)

where v = (vx, vy)T =
(

dx
dt ,

dy
dt

)
is the instantaneous optical flow vector (see

Fleet and Weiss (2005) for further details).
Equation (4.2) is called the optical flow contraint. The solutions of (4.2), plotted

in the velocity space, define the constraint line. The constraint line represents all the
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2D velocities that are consistent with image derivative. Equation (4.2) also defines a
conservation law which is only true for rigid translation of a Labertian surface in the
image plane. Equation (4.2) can be written in the following more compact form:

∇L · v + Lt = 0, (4.3)

where ∇ is the gradient symbol and Lt = dL
dt .

Equation (4.2) is a single linear equation with two unknowns that cannot be
fully solved because it has not an unique solution. This is an ill-posed problem
known as the aperture problem, where equation (4.2) gives as solution a family of
velocities along a line in the velocity space. This line is perpendicular to ∇L, and its
perpendicular distance to the origin is given by |Lt|/‖∇L‖. Equation (4.3) must be
constrained in order to find an unique solution.

Several solutions were proposed to solve equation (4.3). Let us mention some of them:

• Apply second-order differential methods. The second-order differential meth-
ods, derived from the conservation of ∇L(x, t), d∇L(x, t)/dt = 0, use second-
order derivatives to contrain 2D velocity[

Lxx Lyx

Lxy Lyy

](
vx

vy

)
+

(
Ltx

Lty

)
=

(
0
0

)
. (4.4)

These methods have stronger restrictions than the ones needed for Equa-
tion (4.3) and several possibilities have been proposed for its solution (see
Otte and Nagel (1994); Tistarelli (1995)). In this case the first-order deforma-
tions of intensity, such as rotation or dilatation, should not be present. How the
2nd order derivatives are sometimes hard to measure, the 2nd order methods
are normally less accurate than estimates from 1st order methods.

• Write gradient constraints from nearby pixels, assuming that they share the
same 2D velocity. The solution will be the velocity v which minimizes the con-
traint errors. To do this, the least-square (LS) estimator is used:

E(v) =
∑
x

g(x) [∇L · v + Lt]
2, (4.5)

where g(x) is a weighting function which defines the region where the con-
straints will be applied, normally a Gaussian. This approach, which gives good
results, has been extended and it is often used in computer vision applications.
However, it is local, and there is no notion of global regularity for the resulting
flow.

• One may also use parametric models of velocity that respect as much as possible
the optical flow constraint. In the affine case, one looks for σ such that

v(x) = vθ(x) =

(
θ1 + θ2x1 + θ3x2

θ4 + θ5x1 + θ6x2

)
,
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where the unknown parameter vector θ ∈ R6 is determined by minimizing

E(θ) =
∫

Ω
φ(∇L · vθ + Lt)dx,

where φ is a suitable given function. Within the models proposed to
solve this optimization problem one can mention Irani and Peleg (1993) and
Odobez and Bouthemy (1995).

• Regularizing the velocity field is another possibility, where the idea is to mini-
mize

inf
σ

(A(σ) + S(σ)) , (4.6)

where A(σ) is the fidelity term and S(σ) is the smoothing term.

Horn and Schunck (1981) (see also Schnörr (1991)) were the first to solve this
regularization optimization problem. Then, many solutions were proposed:
modifying the Horn and Schuck functional (Black (1992); Black and Rangarajan
(1996); Nési (1993)), adding some penalties based on divergence and
the rotational of the flow field (Suter (1994); Gupta and Prince (1996);
Guichard and Rudin (1996)), proposing an oriented smoothness constraint in or-
der to handle occlusions (Nagel (1983, 1987, 1989); Enkelmann (1988)), among
others.

4.1.3 Frequency-based methods

Frequency-based methods treat motion in the Fourier domain, where the optical flow
is obtained filtering the input image in space and time (spatiotemporal filtering).
Methods can be classified in:

• Phase-based: The velocity is defined in terms of the phase behaviour of the
outputs of the spatiotemporal filters (see, e.g., Fleet and Jepson (1990)).

• Energy-based: These techniques use the energy of the output of the spatiotem-
poral filters to compute the optical flow (see, e.g., Adelson and Bergen (1985)).

The spatiotemporal filtering techniques are physiologically motivated and most of
them come from the computational biology community. In the spatiotemporal (x, t)
space, the problem of detecting motion becomes a problem of detecting spatiotemporal
orientation. The spatiotemporal oriented filters interpret motion as an orientation in
(x, t) space. For example, Figure 4.1(a) shows two vertical bars moving continuously
from left to right at different speeds. Considering only undimensional motion (x-axis
only), the two-dimensional spatiotemporal diagram is represented in Figure 4.1(b),
where the motion becomes a slanted bar. The slant reflects the velocity of the motion
(vg > vb).

The spatiotemporal filters share many properties with V1 mo-
tion detectors and they have been extensively used in the litterature
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Figure 4.1: A black and a gray bars are moving from left to right in a uniform background (a) with
different speeds vb and vg, respectively, where vg is faster than vb. The orientation in the space-time
(x, t) for both bars is shown in (b) where the slant fits the speeds vb and vg. Higher speeds bring out
higher slants. How the motion is unidirectional, the representatio in the space-time (y, t) is ommited.
(c) Spatiotemporal oriented filter that can be used to detect the velocity of the gray bar.

(Hubel and Wiesel (1962); Watson and Ahumada (1983); Adelson and Bergen (1985);
Watson and Ahumada (1985); Van Santen and Sperling (1985); Fleet and Jepson
(1989); Simoncelli and Heeger (1998); Grzywacz and Yuille (1990); Ringach (2002);
Conway and Livingstone (2003)).

In general, they are modeled as Gabor filters oriented in the (x, t) space. To detect
a motion profile in the (x, t) space, the orientation of the Gabor filter should coincide
with the (x, t) orientation of the input stimulus (see Figure 4.1 (c)).

But interpreting the output of a spatiotemporal filter is not an easy task. Its
response varies in time and highly depends on the contrast and luminance level of
the input stimulus. For a drifting sinusoidal grating, the spatiotemporal filter output
will be also a sinusoidal with an amplitude and phase related to the input grating. So,
we cannot use directly the instantaneous value of those filters as motion quantifiers.

The energy filters, proposed by Watson and Ahumada (1983, 1985),
Van Santen and Sperling (1985) and Adelson and Bergen (1985) tackle some of
the problems present in spatiotemporal filtering. They proposed an energy filter
which combines the ouputs of spatiotemporal filters with different phases. The
following sections briefly describe the solutions proposed by Watson and Ahumada
(1985), Van Santen and Sperling (1985) and Adelson and Bergen (1985), showing
that these three proposals share the same phylosophie.

Watson and Ahumada motion detectors

Watson and Ahumada (1983, 1985) are one of the first studies of motion in the fre-
quency domain. They analyzed the frequency spectra of moving images, proposed
simple solution to long-standing problems in motion perception and proposed a lin-
ear motion sensor as a motion detector candidate.
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Their motion sensor considers V1 simple cells properties of visual cells in the
cortex of the cat and monkey. These simple cells can be modeled by a 2D Gabor filter
where the diameter of the surrounding Gaussian at half height is 1.324 times the
period of the sinusoid. This diameter gives a spatial frequency bandwidth (at half
height) of one octave.

The motion sensor, as a spatiotemporal filter, will be constructed considering a
spatial filter entity g(x, y) and a temporal filter entity f(t).

The basic spatial filter g(x, y) is defined as

g(x, y) = a(x)b(y)

a(x) = exp
(
−x2/λ2

)
cos(2πusx)

b(y) = exp
(
−y2/λ2

)
, (4.7)

where us is the frequency of the cosine and λ the spread of the Gaussians.
The basic temporal filter f(t) is modeled with a biphasic profile obtained by the

impulse response

f(t) = ξ [f1(t)− ζf2(t)] , (4.8)

where

fi(t) =
Θ(t)

τi(ni − 1)!
(t/τi)ni−1 exp(−t/τi), (4.9)

Θ(t) is the Heaviside function, and ξ, ζ, τi, ni are constants. The shape of the temporal
profile is shown in Figure 4.2.

The response of the motion sensor is then obtained convolving the impulse
response of all the cascade elements and adding their responses in parallel (process
summarized in Figure 4.3).

New entities are shown in the block diagram,

• The Hilbert spatial filter h(x) = −1/πx converts odd functions into even, and
even into odds. Two functions that are Hilbert transformed of each other are
said to form a quadrature pair.

• The temporal delay δ(t− τ ).

• The Hilbert temporal response h(t) = −1/πt also converts the temporal impulse
response to a quadrature version of the original input.

This linear motion sensor remains as a linear filter which simulates the responses
of V1 simple cells but not V1 complex cells. The next solution presented by Adelson
and Bergen shows how nonlinear combination of simple cells can generate a V1 com-
plex cell.
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Figure 4.2: Temporal profile of the motion detector presented by Watson and Ahumada (1983,
1985): (a) impulse response, (b) amplitude response and (c) phase response (image taken from
Watson and Ahumada (1983)).

Figure 4.3: Block diagram of the linear motion sensor proposed by Watson and Ahumada (1985).

Adelson and Bergen energy filters

As we previously stated, spatiotemporally linear filtering presents two main issues.
First, it is phase sensitive, e.g., its response sign depends on the constrast of the input
stimulus. Second, it is not possible to use its instantaneous response as a simple mea-
sure of motion, e.g., for input drifting gratings we obtain oscillating responses. So, a
more complicated process is needed in order to have a measure of motion independent
of the polarity and instantaneous phase of the input stimulus.

To do so, a phase-independent motion detector, proposed by Adelson and Bergen
(1985) (see Figure 4.4). Two linear spatiotemporal units are combined summing their
squared responses. The linear spatiotemporal units are in quadrature, i.e., with a
different of phase of 90◦. For mathematical convenience the ideal case of Gabor func-
tions is considered, one with an even phase (cosine) and the other with an odd phase
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(sine). Typical unidimensional Gabor spatiotemporal units are:

F odd(x, t) = exp
(
− x2

2σ2

)
sin (ωxx + ωtt) (4.10)

F even(x, t) = exp
(
− x2

2σ2

)
cos (ωxx + ωtt) , (4.11)

where σ is the standard deviation of the surrounding Gaussian, ωx and ωt are the
spatial and temporal frequencies, respectively.

The local motion energy is extracted squaring and summing the two units outputs.
Since the two Gabor functions are sine and cosine functions weighted by a Gaussian
window, the energy is extracted inside a spatiotemporal frequency band.

Figure 4.4: Adelson and Bergen (1985) energy filters: Two linear filters in quadrature, i.e., with
responses 90◦out of phase are combined to create an energy motion detector. The energy motion detector
created is phase-independent (for a given spatial-frequency band) and is obtained summing the squared
response of each linear filter.

The energy filter obtained is phase-independent and for a constant rightward mo-
tion of a drifting grating will give an unmodulated positive response. Its response
is independent to the sign of the contrast, but it depends on the amplitude of the
contrast.

A weak response can be interpreted as two different events: an object moving too
slow or too fast, or an object moving with an intermediate speed but with a low con-
trast. So, contrast and speed are mixed up. In a following work, Adelson and Bergen
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(1986) proposed a mechanism to extract a signal related to speed independently of
constrast:

v =

(
R2

odd + R2
even

)
−
(
L2

odd + L2
even

)(
S2

odd + S2
even

) , (4.12)

where R, L and S denote the output of filters tuned for righward motion, leftward
motion and stationary stimuli, respectively.

Elaborated Reichardt motion detectors

The Reichardt detector, originally proposed by Reichardt (1957), attempted to model
fly visual system. Reichardt model has been the source of inspiration of many ap-
proaches such as the ones proposed by Van Santen and Sperling (1984, 1985) and
Bayerl and Neumann (2004).

Reichardt assumed that motion detectors are composed of two subunits tuned to
motion in opposite directions (left and right). The subunit tuned to leftward motion
is substracted to the subunit tuned to rightward motion, and vicecersa. For example,
if the output of the left unit exceeds the output of the right unit, then the motion
detector will indicate the leftward direction. Analogously, if the output of the right
subunit exceed the output of the left subunit, the motion detector indicates rightward
motion.

But, the motion detector proposed by Reichardt (1957) presented spatial and
temporal inconvenient aliasing, specially for certain choices of the temporal fil-
ter which could lead to incorrect direction responses. To overcome this difficulty,
Van Santen and Sperling (1985) proposed an Elaborated Reichard Detector (ERD)
which correctly indicates motion direction for any spatial and temporal frequency
(Figure 4.5).

The aliasing problem is eliminated chosing the right spatial and temporal filters
(SF and TF) to have the correct sign of the detector output. This detector, known as
Elaborated Reichardt Detector (ERD), also assumes that only the final response is
used, i.e., the difference between the two subunit responses. Using specific assump-
tions for the temporal filter TF and the spatial filter SF, the response of the subunits
can be equivalent or even better than the response of the whole detector. For this, the
authors proposed two variants:

1. Subunits where the temporal filter delays all the temporal frequencies of the
subunit by a quarter of a temporal cycle (π/2 temporal phase-delay subunits).

2. Subunits where their input receptive fields have the properties: for every spa-
tial frequency, the spatial positions of a sinusoidal grating that maximize the
response of the receptive fields differ by one quarter of a spatial cycle (π/2 spa-
tial phase shift subunits).

The motion detector proposed by Watson and Ahumada (1983) shares the same
structure, but not components, than ERD. Basically, Watson and Ahumada (1983)
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Figure 4.5: The Elaborated Reichardt Detector (ERD) proposed by Van Santen and Sperling (1985).
SF are linear spatial filters with spatial response rright and rleft, respectively; TF indicates a linear
time-invariant filter; × indicates a multiplication unit; TA indicates a temporal integration operation,
and − indicates a unit that substracts its left (orange path) from its right (green path) input.

replace the ERD’ s multiplier by an adder assuming a temporal delay of π/2 and a
spatial phase-sift of π/2. Van Santen and Sperling (1985) showed that their ERD can
be transformed to act as a Watson and Ahumada (1983) motion detector.

Van Santen and Sperling (1985) also showed that the ERD is equivalent to
Adelson and Bergen (1985) motion detector, both motion detectors perform the same
operations in a different sequence. At subunits level, in the case of π/2 property
for the temporal delay and spatial receptive field filters, Adelson and Bergen (1985)
outputs differ from ERD outputs by an additive constant K.

Reichardt motion detectors are ideal under low luminance conditions where noise
is prominent. Whereas the gradient detectors show a superior performance under
high luminance conditions where signal-to-noise levels are high (Potters and Bialek
(1994); Borst (2007)).
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WIM sensor

The WIM (Weighted Intersection mechanism Model) sensor, proposed by
Perrone and Thiele (2001); Perrone (2004), sensitive to a certain speed is built up
in stages from two spatiotemporal filters with properties based on V1 neurons.

In primates, some V1 neurons act as low-pass filters while others as band-pass
filters. Low-pass neurons better respond to static patterns, while band-pass neu-
rons prefer moving features. The terms sustained and transient have been assigned
low-pass and band-pass neurons, respectively. Sustained indicates a response that
extends for the duration of the stimulus (low-pass neurons), while transient indicates
a response primarly at stimulus onset and offset (band-pass neurons).

By combining the outputs of two spatiotemporal filters (one non-directional (sus-
tained) and another directional type (transient)) the authors defined a weighted in-
tersection mechanism WIM that produces an elongated and oriented filter in the spa-
tiotemporal frequency domain. This mechanism enables two filters with broad tem-
poral tuning (one low-pass and the other band-pass) to be converted into a filter with
tight temporal frequency tuning and an orientation that maps onto the oriented spec-
tra generated by moving edges. The authors also showed that the speed tuning prop-
erty of such a WIM filter is comparable to that found in many MT neurons. However,
their analysis was only restricted to the speed tuning properties of the filter and they
did not discuss the direction tuning of their motion sensor.
The WIM sensor definition is based on the two following principles

1. The maximum output from the new speed tuned mechanism occurs whenever
the outputs of the transient and sustained neurons are equal.

2. The peak response of the speed-tuned mechanism is maximal only for specific
edge speeds, i.e., for spatial and temporal frequency combinations that lie along
the oriented line in frequency space.

Examples of the velocity-tuned neurons (motion detectors) obtained by the WIM
mechanism are shown in Figure 4.6
Following these two principles, a WIM sensor tuned to speed v, i.e., to all spatiotem-
poral frequencies combinations (u, ω) such that v = ω/u, is defined as

1. The two V1 contrast sensitivity neurons (S: sustained and T : transient) can
be defined to that they overlap along the v = ω/u line by modifying the spatial
frequency tuning of the transient neuron relative to the sustained neuron.

Temporal frequency contrast sensitivity tuning zt, for each value of the stimulus
temporal frequency ω, is modeled and fit using the following equation

zt(ω) =
√

m2
1 + (ζ2 + m2

2)− 2ζm1m2 cos(ϑ1 + ϑ2), (4.13)

where m1 = ((2πωτ1)2 + 1)−9/2, m2 = ((2πωτ2)2 + 1)−10/2, ϑ1 = −9 arctan(2πωτ1)
and ϑ2 = −10 arctan(2πωτ2). τ1 and τ2 are time constants measured in seconds.
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Figure 4.6: MT spectral receptive fields (SRF) obtained using the WIM model. The SRF of the model
mechanism (right hand panels) gradually acquires orientation relative to the spatial and temporal fre-
quency axes as the transient neuron temporal frequency tuning (solid lines in left hand panels) changes
from low-pass to band-pass. Left hand panels (a, d, g): The transience factor (f) controlling the band-pass
extent of the temporal frequency function is set to 0.0, 0.2, and 0.6, respectively, in the three different
panels. Middle panels (b, e, h): Spatial frequency contrast sensitivity functions for both the sustained
(dashed lines) and transient (solid lines) V1 neurons. Right hand panels (c, f, i): Upper right quadrant
of spatiotemporal frequency space showing contour plots of the SRFs produced by the WIM model using
the temporal and spatial functions shown to the left of the plots (image taken from Perrone and Thiele
(2001)).
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This particular function is based on Watson and Ahumada (1985) motion model.
The key parameter is the transient factor (ζ) which changes the function from
low-pass or sustained (ζ = 0) through to band-pass or transient (ζ = 1).

The spatial frequency contrast sensitivity zs, for each value of the stimulus spa-
tial frequency u, is modeled using the magnitude part of the Fourier transform
of a DoG functions as follows

zs(u) =
√

r2
1 − 2r1r2 cos(2πuS) + (r2 cos(2πuS))2 + ((1− 2g)r2 sin(2πuS))2,

(4.14)
where r1 = p1 − q1 and r2 = p2 − q2, with

p1 = A1 exp(−xc1(πu)2) ; q1 = A2 exp(−xs1(πu)2);

p2 = A3 exp(−xc2(πu)2) ; q2 = A4 exp(−xs2(πu)2); (4.15)

This function has 10 parameters that relate the three individual differences
DoG that together make up the space domain spatial receptive field. x terms
are the space constants of the individual Gaussians with xc1 and xc2 controlling
the size of the central part and xs1, xs2 the surrounds of the DoG. The separation
between DoG is controlled by the parameter g.

2. A mechanism that responds maximally to the spatial and temporal frequencies
that lie along the S-T - intersection. If T and S represent the transient and
sustained neurons’ contrast sensitivities, respectively, the contrast sensitivity
of the WIM sensor is given by

M(u, ω) =
log(T + S + α)

| log T − log S|+ δ
, (4.16)

where α and δ are constants. So that:

• α helps broaden the response profile of the WIM sensor, being analogous to
the background or spontaneous activity of neurons.

• δ prevents division by zero making the output less sensitive to noise. δ also
controls the width of the WIM sensor and it is used to set the bandwidth of
it.

4.2 MOTION MODELS

4.2.1 Classical solutions of the aperture problem

Considering the output of a single motion detector, it is not possible to know the
true velocity of a moving object (aperture problem). The object seems to be moving
perpendicularly to its orientation and extra information is needed to determine the
real motion direction.

56



In the case of drifting gratings, a grating seen moving behind a circular aperture
is ambiguous. But, if a second drifting grating is superimposed forming a plaid, the
perceived motion is not ambiguous anymore. In order to explain the perceived motion
of a plaid, three mechanisms were proposed:

1. Intersection of constraints (IOC): This mechanisms establishes a contraint
line in the velocity space of all possible positions of the moving contour after
an interval of time ∆t. The perceived motion follows the velocity vector of the
intersection in velocity space of the constraint lines of the plaid components.
This mechanism was originally proposed by Adelson and Movshon (1982) to ex-
plain their results. Later, Heeger (1992) proposed a neural model to explain this
procedure.

2. Vector average (VA): The velocity of the plaid is the vector average of the
normal components of each constituent grating.

3. Feature tracking (terminators): In the case of plaids, the features to track
where the aperture problem is solved, are the intersections. Other features are
line endings and object corners.

In plaids type II1 the direction predicted by IOC differs of the direction predicted
by VA (see Figure 4.7). In the fovea, plaids type II are perceived in a direction
5◦ away from the IOC prediction towards the components direction. Whereas, in
plaids type I1 the IOC prediction accurately coincides with the perceived direction
(Ferrera and Wilson (1990)). In peripheral vision, the perceived direction of plaids
type II deviates by up to 40◦ from the IOC prediction (Yo and Wilson (1992)).

Also, Yo and Wilson (1992) found that for brief presentations (60ms) in the fovea,
plaids type II are perceived to more in the vector average direction.

Masson and Castet (2002) studied the human perception of unikinetic plaids1. As
in this case only one component drifts, the rules in the velocity space as IOC or VA
cannot be applied to recover the perceived motion direction. This information can
however be reconstructed using the motion of blobs (feature tracking) that are gener-
ated at the intersections between the two component gratings.

There is not an agreement about which mechanism best explain motion percep-
tion. Many models implemented the mechanisms here described adding different
interactions between brain areas and within cell populations.

1Here some short definitions about plaid stimulus:

• Plaid type I: Type of plaid where the direction predicted by IOC coincides with the direction
predicted by VA. These predictions are made in the velocity space considering the velocity of each
drifting grating component.

• Plaid type II: Type of plaid where the direction predicted by IOC differs with the direction
predicted by VA.

• Unikinetic plaids: Degenerate version of plaids type II where one component only is drifting
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The following sections will describe the main bio-inspired motion models present
in the literature. For a better understanding, we divided the existing bio-inspired mo-
tion models into two groups: feedforward models, which consider only the bottom-up
stream from V1 to MT, and recurrent models, where feedbacks and recurrent con-
nections are also considered. The methods here described implemented one of the
mechanisms presented in this section for the aperture problem solution.

Figure 4.7: (a) Drifting gratings used to build a plaid type II, which is characterized because the
direction predicted by IOC differs from the direction predicted by VA. (a.1) grating drifting in a direction
of 135◦, with a spatial frequency of 0.1[pixel/sec] and a temporal frequency of 6[Hz]. (a.2) grating
drifting in a direction of 160◦, with a spatial frequency of 0.1[pixel/sec] and a temporal frequency of
3[Hz]. (a.3) plaid obtained superimposing gratings (a.1) and (a.2). (b) Diagram showing the IOC and
VA predictions in the velocity space for the motion perceived in (a.3). The motion direction perceived
in (a.3) is 5◦deviated from the IOC prediction towards the component directions (Ferrera and Wilson
(1990)). The IOC prediction is much accurate than the VA prediction.

4.2.2 Feedforward models

Grzywacz-Yuille

In Grzywacz and Yuille (1990), the authors proposed a model for the estimation of
local image velocity by cells in the visual cortex. Since the motion sensitive cells of
primary visual cortex are not sensitive to local velocity, but sensitive to the direction
of motion and tuned to spatiotemporal frequencies, they showed how those cells can
be combined in order to estimate the local velocity of an input stimulus.

Motivated by the fact that several properties of V1 motion detector cells can be
explained by motion-energy filters (see Adelson and Bergen (1985)), they introduced
a method for the velocity computation from the outputs of motion-energy filters for
translational motion. This velocity computation is done wiring up the filters’ outputs
to create a new velocity selective cell which is consistent with MT pattern cells.
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The model proposed can be divided into two stages, equivalent with V1 and MT:

1. Motion-energy measurement. The motion-energy filters N(·) are based on
the spatiotemporal oriented filter defined by

F (x, t; Ω,n,Ωt, σ, σt) =
1

(2π)2/3σ2σl
exp

(
−|x|

2

2σ2

)
exp (−iΩnx) exp

(
− t2

2σ2
t

)
exp (−iΩtt) , (4.17)

where x and t are a spatial and temporal location in the image. σ > 0, σt > 0,
Ω, and Ωt are scalar parameters and n = (cos θ, sin θ) is a unit vector indicating
the spatial orientation of the filter.

So, the response of a directionally selective cell to an image L(x, t), is modeled
as the nonlinear response

N(x, t; Ω,n,Ωt, σ, σt) = |F (x, t; Ω,n,Ωt, σ, σt) ∗ L(x, t)|2, (4.18)

where ∗ represents convolution. This nonlinear filter is spatiotemporally tuned
to a sinusoidal grating traveling in the direction n, with spatial frequency Ω,
and with temporal frequency Ωt. σ and σt determining the sharpness of the
tunings.

For their analysis and for computational convenience, the authors assumed that
the bandwidth of the temporal frequency tuning curve is relatively wide com-
pared with the spatial bandwidth.

2. Velocity estimation. The authors proposed three theorems to find the dis-
tribution of spatiotemporal filters in order to have a maximal response for a
certain velocity. The analysis is done considering that a translating image lies
on the plane ωv + ωt = 0 in the frequency domain. The theorem defines that
if σ and σt are constants, then the local maximum of N(x, t; Ω,n,Ωt, σ, σt) as a
function of (Ω,n,Ωt) lies on a plane Ωn ·v+Ωt = 0 for all images that move with
a constant velocity v.

Under some assumptions, the cells’ strongest responses lie close to the plane Ωn·
v+Ωt = 0 for an image translating with velocity v. But, how to estimate velocity
from the combination of the outputs of motion-energy cells, whose centers of
receptive field lie in a single spatial location?

Starting from the theorems proposed by Grzywacz and Yuille (1990), the au-
thors showed three different strategies to compute velocity from the output of
energy motion detectors.

• The ridge strategy: This strategy proposes excitatory connections from
each local motion energy filter to the velocity selective cell. Each velocity
selective cell is connected to the motion energy filters most consistent with
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it (see Figure 4.8). Finally a winner-take-all mechanism is used to select
the strongest velocity cell.

The connection weight between the cell (Ωµ,Ωµ
t , σµ, σµ

t ) and
the velocity selective cell tuned to the velocity v should be
exp

(
−(σµ

t )2(Ωµ
t + Ωµ · v)2/2

)
exp

(
−(v · Ωu∗/k)2

)
, where Ω∗ is orthogo-

nal to Ω, and k is a constant parameter.

• The estimation strategy: This strategy computes the velocity and
estimate the image’s spatial characteristics simultaneously minimizing
a goodness-of-fit criterion. According to the theorems proposed in
Grzywacz and Yuille (1990), the response of a motion energy filter can be
approached as

N(x, t : Ω,Ωt, σ, σt) ≈ r(x, t : Ω) exp
(
−σ2

t

Ω2
t + Ω · v

2

)
,

where the function r(Ω) is unknown and depends on the form of the image.
r(Ω) is also independent of Ωt keeping Ω constant (see Figure 4.9). The
estimation of the velocity is finally done minimizing a goodness-of-fit crite-
rion E(v, r(Ω)), with respect to v and r(Ω). E(v, r(Ω)) is minimized using
standard least-square fit criterion.

• The extra information strategy: This strategy uses the outputs of
purely spatial frequency tuned cells to calculate the spatial characteristics
of the image. This information can be uses to modify r(Ω) in the estimation
strategy

Their model suggests that V1 and MT are the two stages needed for motion com-
putation. They also claim that MT is not concerned with the aperture problem. At the
period when this work was presented, all the physiological studies revealed that V1
only was capable to extract motion of one-dimension (1D) patterns, being MT by con-
sequence in charge to solve the aperture problem. Interestingly, Grzywacz and Yuille
(1990) predicted that V1 not only analyze 1D motion and it was also able to detect 2D
patterns, as it was further demonstrated by, e.g., Pack and Born (2001); Sceniak et al.
(2001); Jones et al. (2001). In this case, the authors claimed that MT is only in charge
to pool the motion information extracted in V1.

Nowlan-Sejnowski

Nowlan and Sejnowski (1994, 1995) proposed a motion processing model to compute
the two-dimensional velocities of moving objects that are occluded and transparent.
Their goal, was not to have an accurate velocity representation, but instead, to seg-
ment an image into regions of coherent motion, provides an estimate of velocity in
each region, and actively selects the most reliable estimates. The model uses motion-
energy filters in the first stage of processing and computes, in parallel, two different
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Figure 4.8: Ridge strategy for velocity computation proposed by Grzywacz and Yuille (1990). Left:
The circles represent samplings of energy motion detectors in the frequency space. The cross sections
of two velocities planes are shown (va and vb) and seven motion energy cells are labelled. Right: Each
of the seven cells have excitatory connections to the velocity cells tuned to va and vb. The line width is
correlated to the strength of the connection weight. Connection weights are strong if the motion energy
parameters are close to the velocity plane of interest (image adapted from Grzywacz and Yuille (1990)).

Figure 4.9: Estimation strategy for velocity computation proposed by Grzywacz and Yuille (1990).
The figure shows the motion energies of a moving dot sampled by seven motion energy cells. The
estimation strategy computes the image’s spatial characteristics and velocity by finding the amplitude
and center of the motion energy distribution. The procedure finds the best fit of the spected distribution
to the data: (*) motion energies, (solid line) correct estimate, (dashed line) incorrect estimates.(image
taken from Grzywacz and Yuille (1990)).
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unit responses: one set of units estimates the local velocity, and the second set selects
from these local estimates those that support global velocities.

The model is a feedforward cascade of locally connected networks of processing
units organized into two parallel processing pathways (see Figure 4.10). The model
is divided into three stages:

Figure 4.10: Schematic diagram of the feedforward processing model proposed by
Nowlan and Sejnowski (1994) (image adapted from Nowlan and Sejnowski (1994)).

1. Local motion energy is extracted from all the locations in the input sequence.
There are 36 motion-energy measurements for each image location (4 orien-
tations and 9 pairs of spatial-temporal frequencies). The motion energy is
extracted combining two-dimensional Gabor filters with spatial frequencies of
(ωx, ωy) and sigma (σx, σy), together with a bandpass temporal filter of the form

fk(t) = (ωtt)k exp(−ωtt)
[

1
k!
− (ωtt)2

(k + 2)!)

]
, (4.19)

where ωt is the filter center frequency and k determines the tuning width.

The outputs of motion-energy stage were organized into a grid of 49×49
receptive-field locations. For each of these receptive field locations there were
36 raw motion energy measurements. The output of the motion-energy stage is
normalized using a soft-maximun normalization

Êi(x, y) =
exp [Ei(x, y)]∑
j exp [Ej(x, y)]

, (4.20)

where Ei(x, y) is one of the 36 raw motion-energy measurements at location
(x, y) and Êi(x, y) the corresponding normalized response, which lies between 0
and 1.
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2. Local velocities and the validity of each velocity estimate are computed in
parallel defining two different pathways: local-velocity pathway and selection
pathway.

The local-velocity pathway combines information from motion-energy filters
tuned to different directions and spatial and temporal frequencies to find the
planes of maximal motion energy in spatial and temporal frequency space, fol-
lowing an algorithm similar to the one proposed by Grzywacz and Yuille (1990).
So, the total input to a unit tuned to velocity vk, I ′k is defined as

I ′k(x, y) =
∑

ωx,ωy ,ωt

wk,ωx,ωy ,ωtÊk,ωx,ωy ,ωt(x, y), (4.21)

where the weights wk,ωx,ωy ,ωt are inversely proportional to the distance between
the plane defined by velocity vk and the center frequency of each motion-energy
unit.

Velocity units receive inputs from all motion-energy units, with directional pref-
erences within ±90◦ from the preferred direction of the velocity unit. The
weights between the motion-energy units and the velocity-tuned units were
trained to optimize a global measure of performance of the model. All the
pools of velocity-tuned units shared a common set of weights. The velocity at
a receptive-field location was represented by the relative strengths of the input
to each velocity unit, this is done through the soft-maximum nonlinearity:

Ik(x, y) =
exp [I ′k(x, y)]∑
j exp

[
I ′j(x, y)

] , (4.22)

where Ik(x, y) is the final state of the unit representing velocity vk and I ′k(x, y)
is the initial state of the unit.

The selection pathway estimates the local validity of each velocity estimate cal-
culating a support index for each of them. The support S′k(x, y) assigned to each
location (x, y) for the velocity hypothesis vk is computed as

S′k(x, y) =
∑

ωx,ωy ,ωt

Êωx,ωy ,ωt(x, y), (4.23)

where the weights wk,ωx,ωy ,ωt were initialized randomly and their final values
are determined by an optimization procedure.

The constraint on the total amount of support for each hypothesis was enforced
by use of global competition among all the units in the each selection layer,
which was implemented with a soft-maximum nonlinearity:

Sk(x, y) =
exp [S′k(x, y)]∑

x′,y′ exp
[
S′k(x

′, y′)
] , (4.24)

where S′k(x, y) is the net input to a selection unit in layer k and Sk(x, y) is the
output state of that unit.
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3. Global estimates of the velocities of objects within the visual scene are formed
by integration across subsets of the local-velocity estimates according to the rel-
ative confidence values assigned by the selection pathway. The global evidence
for a visual target moving at a particular velocity Vk(t) is computed as a sum,
over the product of the outputs of local velocity and selection pathways:

Vk(t) =
∑
x,y

Ik(x, y, t)Sk(x, y, t), (4.25)

where Ik(x, y, t) is the local evidence for velocity k computed by the velocity
pathway from region (x, y) at time t and Sk(x, y, t) is the weight assigned by
the selection pathway to that region. The weights were adjusted to optimize a
measure of the overall performance of the model.

The main difficulties to implement the model proposed by Nowlan and Sejnowski
(1994, 1995) comes from the estimation of the connection weights wk,ωx,ωy ,ωt (see (4.22)).
Their method is to run an optimization algorithm in the training stage. After the
weights are fixed, the system can be applied to similar input stimuli. One limitation
is that the model does not deal with temporal integration of motion. As a consequence,
for example, their model does not detect non-Fourier (second-order) motion stimuli.

Simoncelli-Heeger

Simoncelli and Heeger (1998) proposed a two-stage physiological model for local
image velocity representation in visual areas V1 and MT. These two areas are the
two primary stages of the model. In the two stages the treatment of the signal is
the same: a weighted sum of input values followed by rectification, squaring and
response normalization.

Thanks to the elements previously described in Chapter 3 and Section 4.1, we can
briefly describe each part of the model as follows:

1. V1 simple cells: They are modeled by linear receptive fields (energy motion
detectors selective for spatiotemporal orientation), followed by a half-quaring
rectification and a divisive normalization. The divisive normalization attempt
to account some simple cell nonlinearities, such as, contrast saturation and
cross-orientation inhibition. The divisive normalization is performed dividing
the response of each neuron by a quantity proportional to the summed activity
of a pool of neurons inside a cortical neighborhood. The cortical neighborhood
is formed with neurons tuned to a the full range of orientation, direction and
spatiotemporal frequency.

2. V1 complex cells: They are modeled to have a response relatively indepen-
dent of the precise stimulus position within the receptive field. This is attained
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computing V1 complex cell response as a weighted sum of V1 simple cells dis-
tributed over a local spatial region having the same spatiotemporal orientation
and phase. As V1 motion detectors are modeled as energy-filters, V1 complex
cells are not selective to stimulus velocity. They are only selective to the compo-
nent of velocity orthogonal to their preferred spatial orientation.

3. MT pattern cells: They are modeled in order to create a velocity detector with
a IOC velocity detection mechanisms. The IOC-like behavior is obtained sum-
ming the responses of a particular set of V1 neurons. The spatiotemporal fre-
quency bands of the V1 neurons summed are bisected by the plane of the trans-
lating twodimensional pattern (see Figure 4.11). The summation is over both
temporal and spatial frequency. The MT cell obtained have broader spatial fre-
quency bandwidths than the V1 neurons. In addition to the summation over
spatiotemporal frequency, each MT neurons sums the responses of V1 neurons
with receptive field positions in a local spatial neighborhood. Finally, the MT
responses are half-squared and normalized, as in V1 stage.

Figure 4.11: Construction of MT pattern cell velocity selectivity using a combination of V1 complex
cells. (a) Random dot field stimulus drifting upwards. (b) Intersection of constraints (IOC) construction
for the stimulus shown in (a). Red arrows correspond to the normal component of velocity for two
possible pair of V1 complex cells satisfying the motion direction (blue arrow). (c) Selectivity of V1
neurons tuned for four orientations and three spatial scales, each consistent with a common velocity,
the velocity tuned for the MT cell. These neurons are summed with a positive weight to yield a MT
neuron sensitive to this velocity (image adapted from Simoncelli and Heeger (1998)).

The MT neurons modeled as isolated entities cannot encode stimulus:

• A neuron’s response depends on stimulus contrast and spatial pattern.

• Even for a fixed contrast and spatial pattern, there are family of velocities evok-
ing the same response (arranges in concentric contours around the preferred
velocity).
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The representation of velocity is implicitly encoded in the simultaneous response of
the population of MT neurons. The response of MT population must be interpreted
as discrete samples of a continuous two-dimensional response distribution (velocity
space).

The simulations performed by Simoncelli and Heeger (1998) showed that the
model is consistent with a a variety of physiological data.

The major concern with this model is the lack of realistic temporal dynamics, where
the outputs of each neuron correspond to steady-state firing rates. Another limitation,
also related with the time treatment, is the choice of a Gaussian function for the tem-
poral part of the V1 linear motion detector. This choice is computationally convenient,
but it has three main drawbacks. First, Gaussian derivatives at different scales pro-
duce an uneven tiling of the Fourier domain. Second, the resulting spatial and tem-
poral frequency tuning curves are not separable; In fact, the spatiotemporal frequency
tuning curves are polar-separable which is inconsistent with V1 physiology. Third,
Gaussian derivative receptive fields are non-causal. This problem can be solved in-
troducing a time delay, but a more appropriate solution is to use recursive temporal
derivative filters.

Giese-Poggio

Giese and Poggio (2003) studied the contribution of both visual information path-
ways: form and motion, in a real application as biological motion recognition. They
proposed a hierarchical feedforward neural model, where the size of the receptive
fields is gradually increasing. Figure 4.12 shows a diagram summarizing their model.

The form pathway is modeled as

• Local orientation detectors modeled by Gabor filters (V1). They used eight dif-
ferent orientations and two spatial scales differing by factor 2. Cells are placed
in a equidistant grid and their receptive field sizes are according to real obser-
vations in monkey V1 simple cells.

• Position-and-scale-invariant bar detectors (V1,V4). The invariance (within a
certain range) is obtained pooling the responses of neurons with similar pre-
ferred orientation inside a neighborhood. The total activation is done consider-
ing the max operator between the cells at different scale. A linear threshold is
used to feed this response to the next layer.

• View-tuned neurons (IT, STS, FA2). This stage is formed by a recurrent neural
network where the neurons are previously trained for a certain action (view-

2Some basic definitions: IT: infotemporal cortex, STS: superior temporal sulcus, FA: fusiform face
area, F5: area in monkey premotor cortex.
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Figure 4.12: Diagram summarizing the hierarchical neural model proposed by Giese and Poggio
(2003). The diagram is an overview of the model showing the two pathways for the processing of form
and motion. The middle row show the size of the receptive fields of each stage compared to typical
stimulus (image taken from Giese and Poggio (2003)).

tuned neurons). The output of the form pathway is the sum over all the view-
tuned units representing the same biological motion pattern. Snapshots neu-
rons are selective, for instance, for body shapes. They have large receptive
fields and show substantial position and scale invariance. The snapshots neu-
rons were modeled by Gaussian radial basis function (RBF), which centers are
adjusted during training.

• Motion pattern neurons (STS, F5, FA2). These neurons are modeled by a dy-
namic equation which temporally smooth and average the activity of all snap-
shot neurons that contribute the encoding of the same movement pattern (for
details, see Chapter 6).

The modeling of the motion pathway, which concerns this thesis, is modeled as follows

• Local motion detectors corresponding to V1 direction-selective neurons and com-
ponent motion-selective neurons in area MT (see Section 3.2.4). They did not
model the extraction of the local motion energy in detail, instead they calcu-
lated the optic flow fields directly from the stick figure model that was animated
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using two-dimensional tracking data from video sequences.

• This stage is formed by neurons with larger receptive fields that analyze the lo-
cal structure of the optic-flow fields induced by motion stimulus. They proposed
two types of optic-flow detectors

1. Neurons selective for translation flow, which corresponds to neurons in
area MT, with low or bandpass tuning respect to speed. They included four
populations of neurons with four preferred directions and with receptive
field sizes similar to those found in MT neurons.

2. Neurons selective for motion edges (horizontal and vertical), which corre-
sponds to neurons found in MT, MSTd and MSTl. Their outputs are built
combining the responses of two adjacent subfields with opposite direction
preferences in a multiplicative way. These neurons also present scale in-
variance. The scale invariance is obtained pooling the signals inside the
neuron receptive field using a maximun operator.

• Optic-flow pattern neurons. Equivalent to snapshot neurons of form pathway
modeling, whose existence is a prediction of the model. These neurons, also
modeled by RBF, are selective to complex patterns of optic flow and their pa-
rameters are obtained after a training procedure. The assumed that this type
of neurons can be found in STS, FA2 and maybe MST.

• Motion pattern neurons. Analogously to motion pathway modeling, the outputs
of optic-flow pattern neurons are summed and temporally smoothed. They as-
sumed that this type of neurons can be found in monkey areas STS, FA and
F52.

The aspects of this model concerning biological motion recognition will be talked
at length in Chapter 6.

This model was implemented following a specific goal: to summarize the mech-
anisms involved in the processing of biological motion. The authors implemented a
feedforward model processing the form and motion information independenly. Their
model was only tested with biological motion stimuli. About the limitations of the
model we could cite: no inclusion of attentional mechanismsm or eye movements; no
feedback connections or interactions between the dorsal and ventral pathways, no bio-
logical plausibility for the motion detectors units.

4.2.3 Recurrent models

Unlike feedforward models, recurrent models include all the models with feedbacks
and recurrent connections. In most cases, the feedbacks will emphasize the activation
of a certain population of V1 neurons.
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Wilson, Ferrera and Yo

The authors proposed in Wilson et al. (1992) a motion processing model where MT
neurons receive two different inputs coming from two different parallel motion path-
ways. The MT units receiving a weighted sum of the outputs of these two pathways
start a competitive feedback mechanism which extracts the maximum response. A
schematic diagram of this two motion pathways is shown in Figure 4.13.

The model of Wilson et al. (1992) has two parallel motion processing pathways:

1. The simple one (Fourier motion, Figure 4.13 Left) consists of orientation-
selective filtering followed by motion-energy extraction and a contrast gain con-
trol stage. A contrast gain stage is here necessary to introduce a gain-control
operation to minimize the effects of component contrast variations (contrast sat-
uration). The contrast normalization is calculated dividing the output of the
motion-energy stage by the output of the orientation-selective filters.

2. The second pathway (non-Fourier motion, Figure 4.13 Right) also provides in-
puts to MT neurons and it extracts the motion of texture boundaries. In order to
detect texture boundaries, an additional processing is needed before the motion-
energy extraction and contrast gain control stage. The additional processing
employs: filtering of the input image, response squaring (or rectification) and a
second filtering stage with a lower frequency. This mechanism has been previ-
ously used to extract the location of texture boundaries or discontinuities from
images (see, e.g., Bergen and Landy (1991); Landy and Bergen (1991)). This ad-
ditional processing in the texture boundary motion pathway is suggestive of
existing processing in area V2.

The final stage of the model combines the inputs coming from the two motion
pathways (the simple motion energy pathway and the texture boundary motion path-
way) using a cosine weighted function. The units of this stage compute the direction
of pattern motion. If Ri is the response of the ith input unit with preferred direction
θi, and θp is the preferred direction of a given pattern unit, the input to this pattern
unit, Ep, is given by

Ep =
N∑

i=2

Ri cos(θp − θi), (4.26)

where N is the number of direction of motion of the Fourier and non-Fourier path-
ways.

Following the computation of Ep, there is a stage of competitive feedback mecha-
nism within MT neurons. This mechanism is designed to extract the response of the
most strongly stimulated pattern unit. Each MT pattern unit sends inhibitory signals
to MT pattern units tuned with a relative difference of angle ∆θ of 45◦ ≤ |∆θ| < 90◦.
Finally, after the recurrent inhibition stage, the final predicted direction of motion is
obtained by parabolic interpolation. The effect of the inhibitory feedback is to extract
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Figure 4.13: Schematic of the two-dimensional motion processing pathways proposed by Wilson et al.
(1992). The simple Fourier pathway on the left starts with orientation-selective filtering followed by
a motion energy computation. The response of the oriented filters also provides a feedforward gain-
control signal that divides the motion energy output (circle A/B). The texture boundary pathway, or
non-Fourier pathway, on the right computes the motion energy and gain control after an oriented fil-
tering, squaring, and a second stage of filtering at a different orientation and lower spatial frequency.
The competitive inhibition at the final stage (top) extracts the maximum response (image taken from
Wilson et al. (1992)).
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the maximum plus nearest neighbors of the pattern unit responses. The direction of
motion obtained through the computation of the maximum of the cosine-weighted
sum is equivalent to the VA direction.

This model was only compared with real data measured on plaids composed of
two grating components, accurately predicting their perceived direction. The model
calculates the vector average solution only for a few periods of time. The non-Fourier
pathway shifts the calculated direction away from VA towards the IOC direction.

Grossberg et al.

The motion Boundary Control System (BCS) model proposed by Chey et al. (1997)
and Grossberg et al. (2001) attempts to find the solution to the global aperture prob-
lem by showing how information from feature tracking points, where unambiguous
motion can be computed, can be propagate to ambiguous motion direction points and
resolve the real motion direction.

The model is summarized in Figure 4.14. The first few stages of the model use
transient cells that feed a multiscale short-range motion filter whose larger scales
selectively process higher speeds as a result of the combined action of self-similar
thresholds and competition.

Getting more into details, each stage of the model can be described as

• Level 1: Input. The FACADE model (Grossberg and Mingolla (1985)) is used to
extract the T-junctions of the input stimulus without using a T-junction detector.
It uses circuits that include oriented bipole cells modeling existing cells in V2.
The output of this first level, is a binarized sequence containing only the T-
junctions of the input stimulus.

• Level 2: Transient cells. The second stage is formed by unidirectional tran-
sient cells, directional interneurons and directional transient cells. Unidirec-
tional cells respond to motion (changes in luminosity) independently of its direc-
tion. By the contrary, directionally selective neurons highly respond to motion
on their preferred direction while little response is evoked to motion in the re-
verse direction. These three types of cells are connected between them following
these three principles:

(a) Directional selectivity is the result of asymmetric inhibition along the pre-
ferred direction of the cell.

(b) Inhibition in the null direction is spatially offset from excitation.

(c) Inhibition arrives before, and hences prevents, excitation in the null direc-
tion.

• Level 3: Short-range filter. The mechanism proposed in Layer 2 presents two
inconveniences due to the local null-direction inhibition process, which in part
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Figure 4.14: Diagram summarizing the five stages of the model proposed by Chey et al. (1997). (im-
age taken from Grossberg et al. (2001)).
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does not selectively activates the correct direction. In this layer, the directional
transient cells are spatially and temporally averaged by a short-range filter.
The short-range filter only accumulates evidence from directional transient cells
of similar directional preference within a spatially anisotropic region that is
oriented along the preferred direction of the cell. The short-range filtering is
done at different spatial scales, each of them corresponding to a different speed
range.

• Level 4: spatial competition and opponent direction inhibition. In order
to enhance the amplitude of feature-tracking signals compared to ambiguous
signals, a spatial competition is proposed in this layer. The spatial competition
is done among cells of the same spatial scale preferring the same motion di-
rection. This model stage also uses opponent inhibition between cells tuned to
opposite directions, avoiding of this way a simultaneous enhancement.

• Level 5 and 6: Long-rage filter, directional grouping, and attentional
priming. As it is shown in Figure 4.14, Layers 5 and 6 are linked by a feed-
back network. Layer 5 attempts to models MT cells using a spatially long-range
filter. Similarly to Layer 3, but in a larger spatial region, the long-range fil-
ter pools signals with similar directional preference, opposite contrast polarity,
and multiple orientations. This procedure makes MT neurons to react as true
directional cells.

• Layer 6: MST modeling. The signals from MT (Layer 5) activates MST neu-
rons, which interact via winner-take-all competition across directions. The win-
ning direction is then fed back down to MT through an attentional priming
pathway which influences a region surrounding the spatial location of the MST
cell. This attention mechanism non-specifically inhibits the activation of MT
neurons. In the case of the winning direction, excitation cancels inhibition, so
the winning direction survives the top-down matching process.

Numerous extensions not treated in this chapter have been proposed by the au-
thors, such as, the manipulation of extrinsic and intrinsic junctions (Grossberg et al.
(2001)), form-modulated motion diffusion thanks to the FORMOTION model that can
explain the changes in perception due to contextual changes (Berzhanskaya et al.
(2007)), etc.

Unlike most of the models we revisited, this model propose a solution for the aper-
ture problem diffusing in time the unambiguous motion information of feature points.
Their model explains a large number of psychophysical observations but it is highly
complex. The mathematical analysis of the full model is impossible and many pa-
rameters must be tuned, which makes it hard to run or propose predictions. Morever,
because its high computational cost, only small binary inputs can be treated with only
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4 motion directions. Another problem with such complex architectures is that we do
not know which part of the system is the most critical to explain a given observation.

Bayerl-Neumann

Attempting to solve the aperture problem using contextual information,
Bayerl and Neumann (2004) proposed a powerful feedforward and feedback V1-
MT model. Further extensions of this preliminary model have been proposed in
Bayerl and Neumann (2005, 2007). The recent implementations propose solutions to
deal with transparent motion and to eliminate extrinsic junctions using inhibitory
“T” junctions. In this section, we will only describe the basis of the preliminary model
presented in Bayerl and Neumann (2004) (see Figure 4.15).

Figure 4.15: Overview of V1 and MT modeling proposed by Bayerl and Neumann (2004). The archi-
tecture shows the dynamic interaction modeled between the two visual areas: modulatory feedbacks,
feedforward interaction, and lateral shunting inhibition (image taken from Bayerl (2005)).

The feedback mechanism modeled in Bayerl and Neumann (2004) between MT
and V1 areas triggers a filling-in process along boundaries to solve the aperture prob-
lem.

V1 motion detectors are implemented as Elaborated Reichardt Detectors (see Sec-
tion 4.1.3), where the spatial filtering is performed using spatial receptive fields se-
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lective to static-oriented contrast at a fixed spatial frequency and independent of
contrast polarity between two frames. The directionally-selective cells come from the
pooling over all orientation-selective cells at different time steps. To keep the input
as clean as possible, they modeled V1 cells as motion-sensitive cells independent of
contrast orientations. They claimed that this property does not constrain the capabil-
ity of the model to solve the aperture problem. The model can be adapted in order to
include some important V1 cell characterization, such as, spatiotemporal frequency
tuning, contrast polarity and orientation tuning.

Both, V1 and MT areas are modeled with similar architectures performing the
following three stages:

1. Feedback modulation:

∂tυ
(1) = −υ(1) + netIN · (1 + C · netFB) . (4.27)

2. Feedforward integration:

∂tυ
(2) = −υ(2) + (υ(1))2 ∗G(x,space)

σ1
∗G(∆x,velocity)

σ2
. (4.28)

3. Lateral shunting:

∂tυ
(3) = −0.01υ(3) + υ(2) −

(
1
2n

+ υ(3)

)
·
∑
∆x

υ(2), (4.29)

where n denotes the number of cells tuned to different velocities at any specific lo-
cation, netIN is the input of the model area (e.g., in V1 is the output of the motion
detectors), netFB is the feedback signal (e.g., again in V1 the output of MT model),
∗ denotes convolution and Gσ1 and Gσ2 are Gaussian kernels in space and velocity
domain, respectively.

The main differences between V1 and MT are the spatial size of receptive fields
(V1:MT, 5:1) and the mechanisms proposed within and between each areas.

The authors are focused in the feedback mechanism. Feedback mechanism works
as a predictor that enhances those signals in the lower (V1) area that are compatible
with respect to feature specificity. In other words, only compatible patterns get em-
phasized in the lower area and no activity is produced where no signal is provided by
the input. Their modulatory feedback mechanism (4.27) can be compared with the
IOC mechanism of motion integration, since the input signal constrains the feedback
signal and the intersection of both is emphasized.

The input to the integration stage (4.28), is squared and processed by cells with
isotropic spatial and isotropic directional Gaussian receptive fields. Finally, cell ac-
tivities are normalized using lateral shunting inhibition (4.29). The sum of cell ac-
tivities sensitive to any velocity at a specific location normalizes the total energy. By
this mechanism, unambiguous signals get emphasized, while ambiguous signals lead
to a flat population response.
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Starting from the work of Bayerl and Neumann (2004), Tlapale et al. (2008)
recently proposed a form-motion integration model. The model of Tlapale et al.
(2008) solves the motion integration problem with a spatiotemporal diffusion which
is modulated by luminance. They proposed an anisotropic integration model where
motion diffusion is gated by luminance distribution in the image. This model
explains several psychophysical experiments.

The approach presented by Bayerl and Neumann (2004) models the functionality
of the main mechanism in the primate visual system. Their model was successfully
tested with natural sequences showing comparative results with the ones obtained in
the computer vision community. This is something new compared to the previous bio-
inspired motion models, where no natural images were tested.

Based on a classical linear/non-linear model with rectification and inhibitive divi-
sion as in Simoncelli and Heeger (1998), the model proposed by Bayerl and Neumann
(2004) manages spatial diffusion through a feedback loop. Since the diffusion mech-
anism is relatively simple compared to existing ones (see for instance, Grossberg et al.
(2001), it can be applied on standard sequences used in the computer vision commu-
nity.
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CHAPTER 5

V1-MT: CORE ARCHITECTURE

“We cannot think about what a feedback interaction could do if we do not first explore
the limitations of a feedforward model”
– Simon Thorpe (GDR-vision meeting 2008)
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OVERVIEW

This chapter presents a feedforward V1-MT core architecture that we are going to
exploit in the rest of this thesis. This core model will be mostly classical in its con-
ception (inspired from biology and based on existing models), but we will investigate
how to extend it depending on the applications.

Starting from some V1-MT characteristics shown in Chapter 3 and the modeliza-
tion elements shown in Chapter 4, can we build a simple V1-MT model to process
visual motion information that can be usefully applied into a real application? Here
in this chapter we attempt a V1-MT neuron models to extract motion information
from an input video that will be later used for a specific task, as e.g., human action
recognition1.

Figure 5.1 shows the feedforward V1-MT core architecture proposed in this thesis
to process input video streams. The model is basically formed by two layers of cortical
neurons: V1 layer and MT layer. These layers are created using the V1 and MT
neurons proposed in this thesis.

In this chapter we present general characteristics of the V1 and MT neurons pro-
posed. For V1, we explain how the motion detectors are defined, while for MT, we
describe a general framework that will be further talked at length in Chapters 7 and
8.

Finally, we show how those V1 and MT neural entities are combined in order to
process a wide field motion. Directionally-selective filters modeling V1 simple and
complex cells are applied over each frame of the video input video (see Figure 5.1 (b)).
V1 neurons output feed the subsequent MT layer, which integrates the information
in space and time (see Figure 5.1 (c)).

Keywords: V1, MT, simple cell, complex cell, surround interactions, energy filters,
spatiotemporal filtering.

Contributions of this chapter

1. Proposition of a bio-inspired feedforward V1-MT core architecture. This core
architecture will be further extended for a specific application.

2. Frequency-based analysis of the V1 motion detectors. This analysis will show
the relationship between different parameters and the spatiotemporal fre-
quency tuning.

1Further, in Chapters 7,8 and 9 the model here proposed is used and extended for specific applica-
tions: human action recognition and the study of the role of V1 surround suppression in the solution
of the aperture problem. We show how an analog (Chapter 7) and a subsequent spiking (Chapter 8)
implementation can convey successfully recognition.

78



3. Modelization of several MT center-surround interactions and different surround
geometries.

Organization of this chapter:
Section 5.1 shows the implementation of the V1 motion detectors. Section 5.2 shows

the MT basic entities. Finally, Section 5.3 describes the connectivity between V1 and
MT layers.

Figure 5.1: Block diagram of the feedforward V1-MT core architecture. (a) Input is a real video
sequence, which is preprocessed in order to have contrast normalization and centered moving stimulus.
In practice, we will consider a sliding temporal window of length ∆t. (b) V1 layer: Directionally-selective
filters are applied over each frame of the input sequence in a log-polar distribution grid obtaining the
activity of each V1 cell. (c) MT layer: V1 outputs feed the MT cells which integrate the information in
space and time.
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5.1 V1: THE MOTION DETECTORS IMPLEMENTED

In Grzywacz and Yuille (1990), the authors showed that several properties of sim-
ple/complex cells in V1 can be described by energy filters and in particular, by Gabor
filters. The individual energy filters are not velocity tuned, however it is possible to
use a combination of them in order to have a velocity estimation.

More recently, Mante and Carandini (2005) showed which properties of V1 neu-
rons can be explained using an energy model. In particular, Mante and Carandini
(2005) demonstrated that an energy model of V1 exhibits similar behaviors to those
measured with optical imaging (Basole et al. (2003)).

In this thesis, V1 neurons are modeled as energy motion detectors. The energy
motion detector models a V1 complex cell which is built as a nonlinear combination
of V1 simple cells.

5.1.1 V1 simple cells

Simple cells are characterized with linear receptive fields where the neuron response
is a weighted linear combination of the input stimulus inside its receptive field. By
combining two simple cells in a linear manner it is possible to get directionally-
selective neurons, that is, simple cells selective for stimulus orientation and spa-
tiotemporal frequency (see Figure 5.3 (a)).

As previously mentioned in Section 3.1, the direction-selectivity (DS) of a neuron
refers to the property of that neuron to respond selectively to the direction of the
motion of a stimulus. The way to model this selectivity is to choose receptive fields
oriented in space and time, as it was described in Section 4.1.3.

Given an input stimulus L(x, t), the response of a spatiotemporal oriented V1
simple cell F ∗(x, t) is obtained by the convolution

L(x, t) ∗ F ∗(x, t), (5.1)

where F ∗(x, t) can be defined by one of the following filters

F a(x, t) = F odd(x)Hfast(t)− F even(x)Hslow(t),

F b(x, t) = F odd(x)Hslow(t) + F even(x)Hfast(t), (5.2)

which are spatially located at x = (x, y).

The spatial and temporal parts of (5.2) are defined as follows:

• The spatial parts F odd(x) and F even(x) of each conforming simple cell derive
from Gabor function G(x) defined by

G(x) = exp
(
−k2x2

2σ2

)
sin(ηkx), (5.3)
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where k =

(
cos θ

sin θ

)
and η = 2πf . f is the spatial frequency of the Gabor

function, σ its standard deviation and θ its spatial orientation.

More precisely, starting from (5.3), F odd(x) and F even(x) are then defined by

F odd
θ (x) =

∂Gθ(x)
∂x

(5.4)

= exp
(
−k2x2

2σ2

)[
η cos(ηkx)− kx

σ2
sin(ηkx)

]
,

F even
θ (x) =

∂2Gθ(x)
∂x2

(5.5)

= exp
(
−k2x2

2σ2

)[(
k2x2

σ4
− η2 − 1

σ2

)
sin(ηkx)− 2ηkx

σ2
cos(ηkx)

]
,

• The temporal contributions Hfast(t) and Hslow(t) derive from the Gamma func-
tions Tη,τ (t) defined as

Tη,τ (t) =
tη

τη+1η!
exp

(
− t

τ

)
, (5.6)

where τ specifies the time decay of (5.6) and η its order.

More precisely, starting now from (5.6), Hfast(t) and Hslow(t) are defined sub-
tracting two Gamma functions with a difference of two in their respective orders
obtaining

Hfast(t) = T3,τ (t)− T5,τ (t),

Hslow(t) = T5,τ (t)− T7,τ (t), (5.7)

The biphasic shape of Hfast(t) and Hslow(t) could be a consequence of the
combination of cells of M and P pathways (De Valois et al. (2000); Saul et al.
(2005)) or be related to the delayed inhibitions in the retina and LGN
(Conway and Livingstone (2003)).

Remark: The causality of Hfast(t) and Hslow(t) present in this model generates a more realistic model

than the one proposed by Simoncelli and Heeger (1998), where a Gaussian is used as a temporal profile

which is non-causal and inconsistent with V1 physiology. �

Figure 5.2 shows the respective spatial and temporal contributions for a V1 simple
cell defined as F a(x, t).

The spatial parameters of the Gabor function (5.3): θ, f and σ; and the temporal
parameter τ of the Gamma function (5.6) define the spatiotemporal orientation of V1
simple cells F a(x, t) and F b(x, t).

The spatiotemporal orientation of a V1 simple cell is better visualized in the
Fourier space (see Section 4.1.3). In the Fourier space the power spectrum of a
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Figure 5.2: Spatial and temporal parts of F a(x, t) which models a V1 simple cell. A-B are the Gabor
derivatives representing the spatial contribution for F even(x) and F odd(x), respectively (see equation
(5.4)). C is the temporal contribution given by equation (5.7). Hfast(t) is represented in red while
Hslow(t) is represented in blue.

V1 simple cell is described by two blobs centered at (−ξ0, ω0) and (ξ0,−ω0) , where
ξ0 = (ξx

0 , ξy
0) and ω0 are the preferred spatial and temporal frequencies, respectively

(see Figure 5.3 (c)). The values of ξ0 and ω0, which give the spatiotemporal orienta-
tion, are given by the input parameters: θ, f , σ and τ (see (5.10)).

The quotient between the highest temporal frequency activation (ω0) and the high-
est spatial frequency (ξ0) is the speed of the filter v = (vx, vy), where

vx = ω0/ξx
0 and vy = ω0/ξy

0 . (5.8)

Observing carefully Figure 5.3 (c), it is also possible to see a small activation for the
same speed but in the opposite motion direction. The activation in the anti-preferred
direction tuning is an effect also seen in real V1-MT cells data (e.g., Snowden et al.
(1991)), where V1 cells have a weak suppression in anti-preferred direction (30%)
compared with MT cells (92%) (see also Section 3.2.2).

5.1.2 V1 complex cells

As Section 3.1.1 described, some characteristics of V1 complex cells can be explained
using a nonlinear combination of V1 simple cells. Their responses are relatively in-
dependent of the precise stimulus position inside the receptive field, which suggest a
combination of a set of V1 simple cells responses. The complex cells are also invariant
to contrast polarity which indicates a kind of rectification of their ON-OFF receptive
field responses.

Based on Adelson and Bergen (1985), we define the ith V1 complex cell, located at
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Figure 5.3: (a) Example of a spatiotemporal map of one directionally-selective V1 simple cell
(De Valois et al. (2000)). (b) Space-time diagram for F a(x, t) considering only one spatial dimension x.
Here the directionally-selective property is marked and obtained after a linear combination of F even(x),
F odd(x), Hslow(t) and Hfast(t). It is important also to observe the similarities with the biological activa-
tion maps measured by De Valois et al. (2000) (a). (c) Spatiotemporal energy spectrum of the directional-
selective filter F a(x, t). The slope formed by the peak of the two blobs (ω0/ξx

0 ) is the speed tuning of the
filter, which will only react for that speed inside a very limited spatiotemporal frequency bandwidth.

xi = (xi, yi), with spatiotemporal orientation µi = (ξi
0, ω

i
0) as

C(x, t) =
[(

F a ∗ L
)
(xi, t)

]2 +
[(

F b ∗ L
)
(xi, t)

]2
, (5.9)

where the symbol ∗ represents the spatiotemporal convolution, and F a(·) and F b(·)
are the V1 simple cells defined in (5.2). This definition gives independence to stimulus
contrast sign and the cell response is constant in time for a drifting sinusoidal as
input stimulus. A diagram with the construction of a V1 complex cell defined in (5.9)
is shown in Figure 5.4.

Remark: This complex cell definition does not solve the space invariant property found in real V1

complex cells. By now, this invariance will be taken by MT neurons which have larger receptive fields

than V1 neurons. �

5.1.3 Spatiotemporal frequency analysis of V1 motion detectors

Thinking about the design of our filter bank, we are interested in the estimation of
the spatiotemporal bandwidth of our V1 simple cell model. V1 complex cell C(x, t),
defined in (5.9), is completely nonlinear and the Fourier transform cannot be applied
in order to analyze its frequency content, that is why we will analyze F a(x, t) and
F b(x, t). For simplicity and without loss of generality, we will use just one spatial
dimension x (in the Fourier domain, we will denote ξ as ξ).

Let us denote by F̃ a(ξ, ω) and F̃ b(ξ, ω) the respective Fourier transforms of F a(x, t)
and F b(x, t). Considering an input stimuli L(x, t) = δ(x, t) the impulse responses are
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Figure 5.4: V1 complex cell construction following the model described in Adelson and Bergen (1985).
The complex cell is created starting from the V1 simple cells defined by (5.2).

defined by

F̃ a(ξ, ω) = F̃ odd(ξ)H̃fast(ω)− F̃ even(ξ)H̃slow(ω),

F̃ b(ξ, ω) = F̃ odd(ξ)H̃slow(ω) + F̃ even(ξ)H̃fast(ω), (5.10)

where F̃ odd, F̃ even, H̃slow and H̃fast denote the Fourier transforms of F odd, F even, Hslow

and Hfast, respectively defined by

F̃ odd(ξ) = σ
√

2πξ sinh(ηξσ2) exp
(
−σ2(η2 + ξ2)

2

)
,

F̃ even(ξ) = jσ
√

2πξ2 sinh(ηξσ2) exp
(
−σ2(η2 + ξ2)

2

)
,

H̃fast(ω) =
1

(1 + jτω)4
− 1

(1 + jτω)6
,

H̃slow(ω) =
1

(1 + jτω)6
− 1

(1 + jτω)8
, (5.11)

As we previously mentioned, in the Fourier space the power spectrum of a V1
simple cell (|F̃ a(ξ, ω)|2 or |F̃ b(ξ, ω)|2) is described by two blobs centered at (−ξx

0 , ω0)
and (ξx

0 ,−ω0), where ξx
0 and ω0 are the preferred spatial and temporal frequencies,

respectively (ξx
0 now on denoted as ξ0). The respective power spectrum |F̃ a(ξ, ω)|2 and

|F̃ b(ξ, ω)|2 are shown in Figure 5.5.
In order to estimate the maximal points, ξ0 and ω0, of the power spectrum shown

in Figure 5.5, it will be necessary to analyze its derivatives with respect to ξ and
ω. Since the analytic solutions of ∂|F̃ a(ξ, ω)|2/∂ξ = 0, ∂|F̃ b(ξ, ω)|2/∂ξ = 0 and
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Figure 5.5: (a) Power spectrum of F̃ a(ξ, ω). (b) Power spectrum of F̃ b(ξ, ω) (b). These graphs were
obtained using f = 0.1[pixels/cycles], σ = 5.622 and τ = 0.064[sec]. Numerically we found that ξ0 =

±0.37 and ω0 = ±7.1 are the same for both F̃ a(ξ, ω) and F̃ b(ξ, ω).

∂|F̃ a(ξ, ω)|/∂ω = 0, ∂|F̃ b(ξ, ω)|/∂ω = 0 do not exist, the values of ξ0 and ω0 must
be found numerically.

The numerical solution shows that ξ0 not only depends on the input frequency f ,
but also on the value of σ defined in (5.3). For a fixed value of τ , the dependency of ξ0

in |F̃ a(ξ, ω)|2 with respect to f and σ is illustrated in Figure 5.6.
The value of σ also defines the orientation selectivity of V1 neurons. Small val-

ues of σ originate broad orientation selectivity, while large values of σ improve the
orientation selectivity of V1 neurons (see Figure 5.7 A-B). The orientation selectiv-
ity factor (OF) is then defined as the standard deviation of the Gaussian that better
fits the orientation selectivity curve. So, defining σ as σ = σfactorf , the relationship
between OF and σfactor is illustrated in Figure 5.7 C.

Watson and Ahumada (1983) and Watson and Ahumada (1985) proposed a rela-
tionship between f and σ as follows: the diameter of the Gaussian defined in (5.3) at
half height must be 1.324 times the period of the function. This definition gives the
cell a spatial frequency bandwidth (at half height) of one octave. In this case, using
this relationship the value of σ is fixed as

σ =
0.5622

f
, (5.12)

where f is the spatial frequency of the Gabor functions defined in (5.3). With this
value of σ the curves for ξ0 and ω0 depending on f and τ are shown in Figure 5.8.
From Figure 5.8 it is possible to conclude that:

• The power spectrum of F̃ a(ξ, ω) and F̃ b(ξ, ω) have the same ξ0 and ω0 values.

• The value of ξ0 only depends on f .
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Figure 5.6: Value of the spatial frequency tuning ξ0 depending on the input parameters f and σ

defined in (5.3) (τ fixed). For a fixed value of f , the value of the spatial frequency tuning ξ0 decreases
while σ increases.

Figure 5.7: σ dependency in the orientation selectivity of a V1 complex cell modeled as (5.9). The
orientation selectivity graph was obtained applying different drifting gratings, with different drifting
directions, as input stimulus. A-B shows the effect of σ in the orientation selectivity of a V1 simple cell
for two different values of σ: red curve was obtained for a σ two times larger than the σ used to obtain
the blue curve. C shows how the orientation selectivity, represented by OF, varies according to the value
of σfactor.
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• The value of ω0 only depends on τ .

Specific values of ξ0 and ω0 for certain values of f and τ are shown in Table 5.1,
different values could be approximately found using linear interpolation.

Figure 5.8: Values of ω0 and ξ0 as a function of the input parameters f and τ . (a) Surface obtained
for ω0 depending on the parameters f and τ for |F̃ a(ξ, ω)|2 (upper graph) and |F̃ b(ξ, ω)|2 (lower graph).
The surface shows that the value of ω0 is independent of f . (b) Surface obtained for ξ0 depending on
the parameters f and τ for |F̃ a(ξ, ω)|2 (upper graph) and |F̃ b(ξ, ω)|2 (lower graph). The surface shows
that the value of ξ0 is independent of τ . (c) Relationship between ω0 and τ for |F̃ a(ξ, ω)|2 (blue) and
|F̃ b(ξ, ω)|2 (red). (d) Relationship between ξ0 and f for |F̃ a(ξ, ω)|2 (blue) and |F̃ b(ξ, ω)|2 (red). Specific
values of ω0 and ξ0 are displayed in Table 5.1.

To conclude this section, let us remind that the spatiotemporal frequency tuning
of a V1 simple/complex cell defines its speed selectivity inside that spatiotemporal
bandwidth. These cells are not velocity tuned in the sense defined in Section 3.1.1
where a velocity tuned neuron has a response which is independent of the spatiotem-
poral frequency content of the input stimulus. In our case, velocity tuned neurons
can be constructed adding multiple V1 complex cells sharing the same speed tuning,
i.e., with the same quotient ω0/ξ0 as it is shown in Figure 5.9.

87



Table 5.1: Values of ω0 depending on τ and values of ξ0 depending on f . Different values can be
found using linear interpolation. The relationship between these parameters is plotted in Figure 5.8 (c)
and (d)

τ [sec] ω0[rad/sec] f [cycles/pixel] ξ0[rad/pixel]

0.0001 59.4 0.0 0.0
0.0051 59.4 0.05 0.18
0.0101 43.8 0.1 0.36
0.0151 29.4 0.15 0.56
0.0201 22.2 0.2 0.74
0.0251 17.4 0.25 0.94
0.0301 14.4 0.3 1.12
0.0351 12.6 0.35 1.32
0.0401 10.8 0.4 1.52
0.0451 9.6 0.45 1.72
0.0501 9.0 0.5 1.9
0.0551 7.8 0.55 2.0
0.0601 7.2 0.6 2.0
0.0651 6.6 0.65 2.0
0.0701 6.0 0.7 2.0
0.0751 6.0 0.75 2.0
0.0801 5.4 0.8 2.0
0.0851 5.4 0.85 2.0
0.0901 4.8 0.9 2.0
0.0951 4.8 0.95 2.0

5.2 MT BASIC ENTITY

5.2.1 General definition

MT neurons pool incoming information from V1 according to the shape and charac-
teristic of their receptive field. Every V1 neuron lying inside the MT receptive field
contributes to the MT cell activation.

In our model, we chose a feedforward connectivity pattern as it is shown in Figure
5.10. Each connected V1 neuron has a respective connection weight. The connection
weights are given by the desired tuning values of the MT receptive field.

Let us define the absolute difference of motion direction-selectivity ϕij between
the ith and jth neurons as

ϕij = |θi − θj |,

where θi and θj are the motion direction-selectivity tunings of the ith and jth neurons,
respectively.

So, for a MT neuron i, the criteria is to consider all the jth V1 cells inside the
MT receptive field, such that ϕij < π/4 radians. The weight associated to the con-
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Figure 5.9: V1 velocity tuned neuron built starting from the V1 complex neurons defined in (5.9). (a)
Power spectrum of the V1 complex cell defined in (5.9). This neuron has a speed tuning but it is not a
velocity tuned neuron. A V1 velocity tuned neuron (b) is defined by adding different V1 complex cells
sharing the same speed tuning, i.e., sharing the quotient ω0/ξ0.

nection between the V1 pre-synaptic neuron j and the MT post-synaptic neuron i is
proportional to the angle ϕij between the two preferred motion direction-selectivity
(see Figure 5.11). The connection weight wij between the jth V1 cell and the ith MT
cell is given by

wij =

{
kcwcs(xi − xj) cos(ϕij) if 0 ≤ ϕij ≤ π

4 ,

−kcwcs(xi − xj) cos(ϕij) if ϕij > 3π
4 ,

(5.13)

where kc is an amplification factor, αij is the absolute angle between the preferred
ith MT cell direction and the preferred jth V1 cell direction. wcs(·) is the weight
associated to the difference between the center of MT cell xi = (xi, yi) and the V1 cell
center position xj = (xj , yj). The value of wcs(·) depends on the shape of the receptive
field associated to the MT cell.

Negative weights in equation (5.13) (when ϕij > 3π/4) are included to improve the
direction selectivity of MT neurons eliminating the two-blob shape obtained for V1
neurons (see Figure 5.7 A). The result of this pooling mechanism (without any other
interaction or dynamic) improves the direction selectivity of MT neurons, obtaining
only one blob as it is shown Figure 5.12.

In a general frame, the dynamic activation of a MT neuron mainly depends on
three variables: the previous activation of the MT neuron, the activation of V1 neu-
rons inside its receptive field Ω and the activation of V1 neurons inside the surround
Φ of MT cell. Defining the activation of a MT neuron as AMT (t) and the activation of
the jth V1 neuron as AV 1

j (t), we propose that AMT (t) is a function (f ) of

AMT (t) = f

(
AMT (t− δt),

∑
Ω

AV 1
j (t− δt),

∑
Φ

AV 1
j (t− δΦ)

)
, (5.14)

where δt is the time discretization unit used to compute the evolution in time of the
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Figure 5.10: V1 neurons connecting to a MT neuron. Each MT cell receives as input the afferent
V1 cells. The V1 neurons considered are those lying inside the receptive field of the MT cell. The MT
receptive field also defines the connection weights of each V1 neuron.

Figure 5.11: The connection weights between V1 and MT neurons are modulated by the cosine of the
angle ϕij (ϕik) between the preferred direction of the ith MT neuron and the preferred direction of the
jth (kth) V1 neuron. If ϕ falls into the red zone, the connection weight associated is positive. By the
contrary, if ϕ falls into the blue zone, the connection weight is negative (see equation (5.13)).
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Figure 5.12: (a) Motion direction selectivity of a V1 neuron. (b) Motion direction selectivity of a MT
neuron. The orientation selectivity graphs were obtained applying different drifting gratings, with dif-
ferent drifting directions, as input stimulus. The polar diagram for a MT neuron was obtained pooling
the responses of V1 neurons with the respective connection weights defined in equation (5.13). The di-
rection selectivity of MT neurons is highly improved compared with the V1 direction selectivity, passing
from bimodal to unimodal selectivity.
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activity of a MT neuron. δΦ is the time delay to consider the activation of V1 neurons
belonging to MT surround.

See later: In Chapters 7, 8 and 9, the dynamics and evolution in time of MT neurons will be defined

by their models. The activation of a MT neuron AMT will be, for instance, interpreted as: the value of its

membrane potential or the mean firing rate. �

5.2.2 MT center-surround interactions

The activation of the MT surround modulates the activation of its classical recep-
tive field. This modulation, given by the third argument of function f in equation
(5.14), depends on the shape and organization of the center-surround interactions
(Xiao et al. (1997b)) which is usually ignored in MT-like models. In most cases this
modulation is inhibitory, but Huang et al. (2007) showed that this interaction, de-
pending on the input stimulus, can be also integrative. The direction tuning of the
surround compared with the center tends to be either the same or opposite, but rarely
orthogonal (see Section 3.2.3). Considering this, in this thesis we propose different
center-surround interactions and different surround geometries.

Following the results found by Born (2000), we consider three types of MT center-
surround interactions in our model. Our claim is that the antagonistic surrounds
contain key information about the motion characterization, which could highly help
in a real application where motion features must be analyzed, such as human action
recognition (see Chapters 7 and 8). More precisely, we propose a cell with only the
activation of its classical receptive field (CRF) and two cells with inhibitory surrounds
as shown in Figure 5.13.

Regarding different surround geometries, we included four types of MT cells (see
Figure 5.14): one basic type of cell activated only by its CRF, and three other types
with inhibitory surrounds. We claim that the information obtained thanks to the
asymmetric surrounds brings complementary information about motion (such as, mo-
tion contrasts), and we will illustrate this in the Part II of this thesis. The tuning
direction of the surround is always the same as the CRFs, but their spatial geome-
try changes, from symmetric to asymmetric-unilateral and asymmetric-bilateral sur-
round interactions. Of course, it is important to mention that this approach remains
a coarse approximation of the real receptive field shapes.

5.3 IMPLEMENTATION OF V1-MT AS NETWORK OF NEU-
RONS

For all the approaches presented in this thesis, V1 and MT neurons are arranged
as V1 and MT layers of neurons, respectively. Those layers are able to process the
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Figure 5.13: Center-surround interactions modeled in the MT cells. (a) Classical receptive field (CRF)
modeled through a Gaussian. (b)-(c): Two receptive fields with inhibitory surround, which are modeled
with a Difference-of-Gaussians (DoG). (b) Inhibitory surround with antagonistic direction tuning com-
pared to the CRF. (c) Inhibitory surround with the same direction tuning than the CRF.

Figure 5.14: MT center-surround geometries modeled in our approach. (a) Classical receptive field
CRF modeled with a Gaussian. All the surrounds from (b) to (d) are also modeled by Gaussians. (b)
Represents a symmetric surround. The two groups of cells with asymmetric surrounds are represented
in (c) and (d). (c) Represents a bilateral asymmetric surround. (d) Represents a unilateral asymmetric
surround. There is an important presence of anisotropic surround interactions in MT cells: In Xiao et al.
(1997b, 1995), the authors showed that within the MT cells with surround suppression, the configura-
tion (b) is present only in the 25% of the cells, while (c) and (d) cover the resting percentage with a
presence of 50% and 25%, respectively.
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motion information contained inside a defined visual field. This section describes
how V1 and MT layers are defined.

5.3.1 Organization of V1 layers

Given V1 complex cells modeled by (5.9), we consider NL layers of V1 cells (see Figure
5.15). Each layer is built with cells sharing the same speed tuning v = ω0/‖ξ0‖ and
Nor different spatial orientations θi = arctan(ξyi

0 /ξxi
0 ), i = 1, .., Nor. All the V1 cells

belonging to one layer, with receptive fields centered in the position (xi, yi), form what
we call a column. One column has as many elements as the number of orientations
defined Nor. See Figure 5.15 for an illustration.

Figure 5.15: Diagram with the architecture of one V1 layer. There are two different regions in V1, the
fovea and periphery. Each element of the V1 layer is a column of Nor V1 cells, where Nor corresponds
to the number of orientations.

The centers of the receptive fields are distributed along a radial log-polar scheme
with a foveal uniform zone. The related one-dimensional density d(r), depending of
the eccentricity r, is defined by

d(r) =

{
d0 if r ≤ R0,

d0R0/r if r > R0.
(5.15)

The cells with an eccentricity r less than R0 have an homogeneous density and their
receptive fields refer to the retina fovea (V1 fovea). The cells with an eccentricity
greater than R0 have a density depending on r and receptive fields lying outside the
retina fovea (V1 periphery). An schematic representation is shown in Figure 5.17 (a).

Reminder: V1 complex cells defined in (5.9) are not velocity tuned neurons. They are sensible to

velocity but inside a very limited spatiotemporal frequency bandwidth defined by the input parameters

of (5.3): τ . f and θ (see Figure 5.9 (a)). �

Along this thesis we will not be concerned about speed, but only about the direc-
tion of motion. So, in our case for a given spatial orientation θ we are interested
into pave the spatiotemporal frequency space of interest in an homogeneous manner.
Following the work done by Mante and Carandini (2005), our frequency space of in-
terest is limited to: spatial frequency range of 0.05 to 0.2 cycles/pixel, and temporal
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frequency range of 2 to 8 Hz. Inside this frequency space we used three different
spatial frequencies: 0.05, 0.1 and 0.2 cycles/pixel; and three different temporal fre-
quencies: 2, 4 and 8 Hz. Using these values, for a given spatial orientation θ the
spatiotemporal frequency space of sensibility is shown in Figure 5.16.

Figure 5.16: Frequency space tiled by the different V1 complex cells used in this thesis. This
graph was obtaining combining nine V1 complex cells with spatial and temporal frequency tuning of
{0.05, 0.1, 0.2}[cycles/pixel] and {2, 4, 8}[Hz], respectively. The values of the parameters f and τ of (5.9)
were obtained from Table 5.1.

5.3.2 Organization of MT layers

Analogous to V1 cells, MT cells are distributed in a log-polar architecture, with a
homogeneous area of cells in the center and a periphery where the density decreases
with the distance to the center of focus. While the density of cells decreases with the
eccentricity, the size of the receptive fields increases preserving its original shape.
Figure 5.17 (b) shows an example of the log-polar distribution of MT cells. Each
center-surround interaction or center-surround geometry defines a MT layer.
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Figure 5.17: Sample of log-polar architecture used for V1 and MT layers, showing the difference of
cells density between V1 (a) and MT (b). The cell distribution law is divided into two zones, a homoge-
neous distribution in the center with a certain radius and then a periphery where the density of cells
decays with the eccentricity.
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Part II

Human Action Recognition
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CHAPTER 6

STATE OF THE ART OF HUMAN

ACTION RECOGNITION

“Never confuse motion with action”
–Benjamin Franklin (1706-1790)
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OVERVIEW

Human action recognition can be defined as the process of labelling input video se-
quences with actions. This is a challenging visual task which has been vastly studied
in several communities.

Establishing an automatic human action recognition system is extremely chal-
lenging. In general, many constraints and assumptions are needed in order to obtain
satisfactory results. Let us mention some difficulties: For example, the same action,
performed from different points of view, can lead to very different image observa-
tions; Different persons can appear differently due to differences in anthropometry,
clothes, skin color; The appearance can also be influenced by the lightning, specially
if it is not homogeneous inside the image; Another factors can come from the distance
camera-target, the speed of the action performed or the localization inside the video.

In this chapter we briefly describe the state of the art of the human action recog-
nition problem. We also mention some notions about how some parts of the brain
could be involved in this visual processing task.

Keywords: Human action recognition, biological motion recognition, point-light
stimuli, fMRI.

Organization of this chapter
Section 6.1 describes the state of the art of human action recognition in the

computer vision community. Section 6.2 describes studies done in neuroscience
trying to understand the underneath mechanism of the human action recognition
task. Finally, Section 6.3 describes about the contributions done in the computational
neuroscience community.
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6.1 HOW COMPUTER VISION DOES IT?

Human action recognition and human motion analysis in real scenes remain
challenging problems in computer vision and it has been vastly studied in the last
20 years (Aggarwal and Cai (1999); Gavrila (1999); Moeslund et al. (2006); Poppe
(2007)). Human action recognition is closely related to different research lines of
human motion analysis that will no be treated in this chapter, such as, gesture recog-
nition or hand-pose estimation (see Mitra and Acharya (2007) and Erol et al. (2007),
respectively).

Motion is the key feature for a wide class of computer vision approaches. Existing
methods consider different motion representations or characteristics, such as coarse
motion estimation, global motion distribution, local motion feature detection or spa-
tiotemporal structure learning (Zelnik-Manor and Irani (2001); Efros et al. (2003);
Laptev et al. (2007); Dollar et al. (2005); Niebles et al. (2008); Wong et al. (2007)).

Human motion can be interpreted of different manners, for instance, the hierar-
chical methodology proposed by Moeslund et al. (2006) describes a human action as:
action primitive, action and activity. Action primitive is an atomic movement as for
example “raise up left arm”. A collection of action primitives can describe an action,
such as, “walking”. Finally, activities is a series of actions, which give the interpreta-
tion of the action performed.

In general, the human motion can be interpreted into two categories (see Figures
6.1 and 6.2):

1. Holistic representations, where the visual information is encoded as a whole.
Within holistic representations, we can account: the analysis of the shape
of the silhouette evolution across time (Bobick and Davis (2001); Blank et al.
(2005); Wang and Suter (2007); Mokhber et al. (2008)); the analysis of the
optical flow inside the ROI (Efros et al. (2003)); grid-based representation
as a combination of local descriptors (Ragheb and Hancock (2003); Zhu et al.
(2006); Tran and Sorokin (2008); Thurau and Hlavac (2008)); 3D spatiotem-
poral volumes (Blank et al. (2005); Ogata et al. (2006); Gorelick et al. (2007);
Yilmaz and Shah (2008); Jiang and Martin (2008)); generic human model re-
covery (Hogg (1983); Rohr (1994); Goncalves et al. (1995)).

2. Path-based representations, where the visual information is encoded
as a collection of small, independent patches. The lack of a back-
ground model, proper localization of targets and partial occlusion inter-
fers with the estimation of the ROI. In these cases, the path-based ap-
proaches present a valable alternative. The patches (2D or 3D) can
be treated independently and each action class is described by a dis-
tribution over all the patches. Within path-based approaches we can
cite: space-time interest points (Dollar et al. (2005); Laptev et al. (2007));
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extraction of motion periodicity characteristics (Polana and Nelson (1997);
Seitz and Dyer (1997); Cutler and Davis (2000); Collins et al. (2002)); group-
ing patches into a codebook representation (Chomat et al. (2000); Lowe (2004);
Jhuang et al. (2007); Escobar and Kornprobst (2008); Schindler and Van Gool
(2008)); grid-based representation (Laptev and Perez (2007); Laptev et al.
(2008); Fathi and Mori (2008)); correlations between features (Fanti et al.
(2005); Wong et al. (2006); Wong and Cipolla (2007); Niebles and Fei-Fei (2007);
Kim et al. (2007); Liu et al. (2008); Liu and Shah (2008)); body parts modeling
and tracking (Gavrila and Davis (1996); Shah and Jain (1997); Gavrila (1999)).

Figure 6.1: Samples of holistic representations for human motion analysis. (a) Examples of the local
shape-time saliency features of Blank et al. (2005). (b) Skeleton extraction from the input sequence of
the top row of Efros et al. (2003).

Figure 6.2: Sample of a path-based representation proposed by Laptev et al. (2007). The figure shows
examples of scale and velocity adapted local motion events for three different actions: hand-waving,
boxing and walking. Events are illustrated as dark ellipsoids and correspond to corners in a 2D+t
representation of the shape moving.

An important category of approaches mentioned in the previous paragraph
is based on the motion information. For example, it was shown that a rough
description of motion (in Efros et al. (2003)) or the global motion distribution
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(Zelnik-Manor and Irani (2001)) can be successfully used to recognize actions. Lo-
cal motion cues are also widely used. For example, in Laptev et al. (2007), the au-
thors propose to use event-based local motion representations (here, spatial-temporal
chunks of a video corresponding to 2D+t edges) and template matching. The idea of
extracting spatiotemporal features has been proposed in several contributions such
as Dollar et al. (2005), and then Niebles et al. (2006); Wong et al. (2007), using the
notion of cuboids. Another stream of approaches was inspired by the work of Serre
(2006), first applied to object recognition (Serre et al. (2005); Mutch and Lowe (2006))
and then extended to action recognition (Sigala et al. (2005); Jhuang et al. (2007)).

6.2 HOW THE BRAIN DOES IT?

Action recognition has been addressed in psychophysics where remark-
able advances were made in the understanding of human action perception
(Blake and Shiffrar (2007)). The perception of human action is a complex task that
combines not only the visual information, but additional aspects such as social inter-
actions or motor system contributions. From several studies in psychophysics, it has
been shown that our ability to recognize human actions does not need necessarily a
real moving scene as input. In fact, we are also able to recognize actions when we
watch some point-light stimuli corresponding to joint positions (see Figure 6.3, also
Johansson (1973)). This kind of simplified stimuli, known as biological motion, was
highly used in the psychophysics community in order to obtain a better understand-
ing of the underlying mechanism involved.

Figure 6.3: Snapshots of two different actions: walking (a-c) and running (d-f), the junctions to extract
point-light stimulus are marked on the figures (a) and (c). For walking: (b) point-light stimulus obtained
from (a); (c) stick-figure stimulus obtained from (a). Analogous for running sequence (image adapted
from Giese and Poggio (2003)).

The neural mechanisms, processing form or motion taking part of biological mo-
tion recognition, remain unclear. On the one hand, Beintema and Lappe (2002) sug-
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gested that biological motion can be derived from dynamic form information of body
postures and without local image motion. On the other hand, Casile and Giese (2003)
proposed a new type of point-light stimulus showing, that only the motion informa-
tion is enough and the detection of specific spatial arrangements of opponent-motion
features can explain our ability to recognize actions. Finally, Casile and Giese (2005)
showed that biological motion recognition can be done with a coarse spatial location
of the mid-level optic flow features.

Interestingly, it was confirmed that in the visual system the motion pathway is
also very much involved in the action recognition task (see, e.g., Pucel and Perret
(2003); Hirai and Hiraki (2006)), but of course other brain areas (e.g., the form path-
way) and mechanisms (e.g., top-down attentional mechanisms) are also involved to
analyze complex general scenes.

This dichotomy between motion and form finds some neural basis in the brain
architecture and it was confirmed by fMRI studies such as Grossman et al. (2000);
Vaina et al. (2001); Michels et al. (2005). A simplified representation of the visual
processing is that there exists two distinct pathways: the dorsal stream (motion path-
way) with areas such as V1, MT, MST, and the ventral stream (form pathway) with
areas such as V1, V2, V4. Both of them seem to be involved in the biological motion
analysis.

6.3 EXISTING BIO-INSPIRED MODELS

Nowadays, we can observe a special interest for the so-called bio-inspired ap-
proaches to model a part of the visual system functionalities. For example, we pre-
sented in Section 4.2 several bio-inspired models for motion estimation. The bio-
inspiration term comes from the modelization of a system following the hierarchical
architecture of the visual system, and not only its architecture, but also different
functionalities. In the context of human action recognition, which implies much more
complex processing, some degree of simplification and abstraction is needed.

Because the problem by itself is also very challenging, there are, up to our knowl-
edge, very few bio-inspired approaches. In this section, we present the two main
bio-inspired models existing in the literature.

6.3.1 Giese and Poggio’s model

Giese and Poggio (2003) proposed a model for visual processing in the dorsal (motion)
and ventral (form) pathways. The stages of their model performing motion processing
are described in Section 4.2.2, and a diagram of their model was shown in Figure 4.12.
They propose a motion pattern neuron created from snapshot neurons’ outputs. The
snapshot neurons involved in the encoding of the same motion pattern are summed
in a motion pattern neuron (see Figure 6.4). Snapshot neurons have asymmetric lat-
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eral connections that pre-excites temporally subsequent snapshot neurons encoding
the same body configuration. Temporally, previous snapshot neurons are inhibited.
The motion pattern neurons have a significantly activity only when the individual
snapshot neurons are activated in the correct temporal order.

Figure 6.4: Motion pattern neuron created from the snapshot neurons’ output encoding the same
motion pattern, as e.g., walking. Snapshot neuron at the center (blue) has lateral inhibitory connec-
tions with the temporally previous snapshot neuron and excitatory connections with the temporally
subsequent snapshot neuron (Image taken from Giese and Poggio (2003)).

Snapshot neurons are ruled by the following differential equation

τu
du(t)

dt
+ un(t) = sn(t) +

∑
m

w(n−m)f(um(t)), (6.1)

where un is the membrane potential of the nth snapshot neuron; sn is the output
of the radial basis functions trained with learned snapshots; w is the asymmetric
lateral coupling strength; f is a sigmoidal nonlinear function and τu a time constant.

Similarly, motion pattern neurons are ruled by

τy
dy(t)
dt

+ y(t) =
∑

n

f(un(t)), (6.2)

where y is the output of the motion pattern neuron and τy its respective time constant.
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Motion pattern neurons for the dorsal pathway are created using the same mech-
anism described for the ventral pathway. The difference is that now the optic-flow
pattern neurons are used instead of snapshot neurons (see Figure 4.12).

The motion pattern neurons coming from motion and form pathways were in-
dependently tested for the biological motion recognition task, i.e., using point-light
stimuli and stick figures, both obtained from real sequences. For stick figures they
found that motion pattern neurons coming from form and motion pathways correctly
respond to the right sequence, but motion pattern neurons from motion pathway also
have a non neglected activation for distractor patterns. This effect was not repro-
duced when stick figures were replaced by point-light stimuli to test robustness. The
motion pathway of the model generalizes from full-body (stick figure) to point-light
stimuli because the optic-flow field induced by point-light stimuli is a kind of sam-
pled version of the optic-flow field generated by the stick figure, obtaining of this way
a successful recognition. No such generalization occurs in the form pathway, where
those motion pattern neurons were not able to recognize the action performed by the
point-light stimuli.

They also degraded the quality of point-light stimuli, i.e., they eliminated some
junctions. Removing elbows and the feet is specially damaging for recognition, sug-
gesting the crucial role of the opponent motion units present in the motion pathway
model.

An extension of this model was proposed by Sigala et al. (2005). This extension
only uses the information of the dorsal stream, proposing a biological motion recog-
nition system using a neurally plausible memory-trace learning rule.

The model presented by Giese and Poggio (2003) exhibits several interesting prop-
erties for biological motion pattern recognition, such as, spatial and temporal scale in-
variance, robustness to noise added to point-light motion stimuli and so on. Within its
simplifications we can account: no attentional mechanisms, no interaction between
dorsal and ventral pathway and no biological inspiration to extract the optical-flow
in the first stage of the model. In practice, if we want to consider a new action, new
parameter fitting is required to train the respective snapshot and optic-flow neurons.

6.3.2 Jhuang et al.’s model

More recently, Jhuang et al. (2007) proposed a feedforward architecture, which can
be seen as an extension of Serre et al. (2005) to treat the action recognition problem
in real sequences. They proposed a hierarchical structure based on Giese and Poggio
(2003); Serre et al. (2005) and Mutch and Lowe (2006) to obtain as output a feature
vector representing the input grayscale video sequences. The diagram of their model
is shown in Figure 6.5.

The first stage of the model S1 is the extraction of motion features. Motion features
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Figure 6.5: Architecture of the model proposed by Jhuang et al. (2007) to perform action recognition
in real sequences, see text for details (Image taken from Jhuang et al. (2007)).

are obtained by motion-sensitive units claiming similarity with V1 and MT neurons1.
Three types of motion-sensitive neurons were tested:

1. Space-time-gradient based S1 units. The motion information is extracted
computing the ratio of the temporal gradient to a spatial gradient. They con-
sidered the absolute values of gradients in order to have contrast reversal inde-
pendence.

2. Optical-flow-based S1 units. Direction tuning curve of V1 neurons were
modelated as a circular-Gaussian-like function. V1 neurons were grouped into
ranges of speeds to define MT neurons. Finally, S1 units were created combining
V1 and MT neurons in a multiplicative way.

3. Space-time-oriented S1 units. The motion information is extracted using a
set of spatiotemporal oriented filters. A set of 3D Gabor filters were used to
extract the image flow. MT neurons were modeled by 3D Gaussian derivative
filters (3rd derivative).

The tolerance to spatial translation is then performed by C1 units. C1 units pool
the maximum responses from S1 units over local spatial positions. The resulting C1

frames are smaller than S1 frames due to pooling mechanism.
The temporal-prototype-sensitive units S2 are a prediction of the model and the

authors claim that these units are similar to MST neurons. At every position in the
1According to their methodology and Chapter 4, only the space-time-oriented S1 units can be consid-

ered as biologically inspired.

107



C1 layer, they perform a template matching operation between the current patch C1

units centered at that position and each of the template d1 that was previously ob-
tained during training phase. Subsequently, C2 units perform a maximum-pooling
operation adding more position invariance. The maximum extraction is calculated
per frame. Stacking all the C2 responses of a frame, they obtain a vector representa-
tion.

The sequence selectivity units S3 are in charge of to respect the temporal order
of the frames for each action. S3 is then obtained extracting convolving the stored
temporal prototype with a C2 matrix. C2 matrix is obtained aligning C2 vectors into
columns to create a matrix, Then, at a random column, all the rows inside a temporal
window form the C2 matrix.

C3 units still add invariance to shifts in time by a maximum-pooling operation. C3

pools the global maximum across all the pixel position of an input S3 map, resulting
in a scalar representation.

Finally, the classification stage is done with support vector machine (SVM).
Similarly to the work of Giese and Poggio (2003), the model presented by

Jhuang et al. (2007) implemented spatial and temporal invariance. The invariance
to spatial and temporal scale is achieved considering as many motion detector layers
as the number of spatial and temporal scales to be detected, and then applying the
max operator. This model requires pre-processed videos as input, where the action is
segmented and the background subtracted. No attentional mechanism or feedback is
implemented.

The methodology of the model presented by Jhuang et al. (2007) will be further
analyzed and their results compared with the results obtained with the approach
proposed in this thesis (see Sections 7.3 and 8.4.3).
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CHAPTER 7

ANALOG MODEL

IMPLEMENTATION

“You have to see the pattern, understand the order and experience the vision”
–Michael E. Gerber
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OVERVIEW

A wide class of computer vision approaches dealing with human action recognition
task are based on motion analysis. Also, fMRI studies have shown that the dorsal
pathway is very much involved in the action recognition task.

Given the V1-MT feedforward core architecture defined in Chapter 5, we inves-
tigated here if such a bio-inspired model can be successfully used to implement a
platform performing human action recognition task.

The performance of this architecture is tested using the Weizmann database1.
We show that modeling different center-surround interactions of MT neurons the
recognition performance is significantly improved. We also show a comparison of our
results with the results obtained by Jhuang et al. (2007).

Contributions of this chapter:

1. The implementation of an analog V1-MT feedforward architecture to be applied
in a real application.

2. The implementation of a classification method to analyze MT analog output.

3. Study of the effect of different MT center-surround interactions in human action
recognition performance.

Keywords: Human action recognition, mean motion map, MT center-surround in-
teractions.

Organization of this chapter
This chapter is organized as follows. Section 7.1 describes the specific definitions of

V1 and MT neurons. Section 7.2 describes how the mean motion maps are defined in
order to represent the motion information contained in the input stimulus. It also de-
scribes the distance used to compare the similitude between two mean motion maps.
Finally, Section 7.3 describes the experimental protocol and the results obtained on
the Weizmann database.

7.1 ANALOG V1-MT ARCHITECTURE

In Chapter 5 we described our V1-MT feedforward core architecture consisting of
a V1 motion detector and a basic MT entity. Now, starting from those definitions, we
specify in detail the model for neurons of V1 and MT. In this chapter, neurons work in

1http://www.wisdom.weizmann.ac.il/~vision/SpaceTimeActions.html
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an analog manner so that the activation of V1 and MT neurons, i.e. the mean firing
rate, will be estimated from the value of the membrane potential after a nonlinearity.

7.1.1 V1 neuron implementation

It is well known in biology that V1 neurons’ output show several nonlinearities due
to: response saturation, response rectification, or contrast gain control (see e.g.,
Albrecht et al. (2004)). These nonlinearities are reflected in the mean firing rates
of those V1 neurons.

Starting from the membrane potential, one of the classical ways to estimate the
mean firing rate and thus obtain nonlinear saturation in the V1 response, is to pass
the membrane potential through a sigmoid function S(·) defined as

S(x) = [1 + exp (−a(b− x))]−1 , (7.1)

where the parameters, a and b define the respective slope and horizontal position of
the sigmoid function, respectively (see Figure 7.1).

Figure 7.1: Sigmoid function used to convert the membrane potential of the ith V1 neuron (in this
case modeled as the output of the V1 complex cell C) to its firing rate rV 1

i (t). This nonlinear function
serves to model nonlinearities seen in real V1 neurons (see, e.g., Albrecht et al. (2004)). Two graph are
shown for different values of the parameters a and b. Red curve: a = 1.5, b = 2, blue curve: a = 0.6,
b = 2.

In this analog version of our motion processing model, V1 neurons are directly
obtained from the output of the complex cell described in Section 5.1.2. We assume
that the membrane potential of the ith V1 neuron is modeled by the output of the
complex cell C(·) defined in equation (5.9). So, the mean firing rate rV 1

i (t) of the ith
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V1 neuron, is estimated by
rV 1
i (t) = S (C(x, t)) , (7.2)

where the parameters a and b of the sigmoid function were tuned to have a suitable
response in the case of drifting gratings as inputs.

7.1.2 MT neuron implementation

Let us now precise the definition of a MT neuron given in equation (5.14), where its
activity AMT (t) was defined by

AMT (t) = f

(
AMT (t− δt),

∑
Ω

AV 1
j (t− δt),

∑
Φ

AV 1
j (t− δΦ)

)
.

Along this chapter, the activity of a MT neuron AMT (t) will be modeled by its mem-
brane potential uMT (t).

In this work, we chose that MT neurons are modeled by a simplified
conductance-based neuron without input currents (see e.g., Gerstner and Kistler
(2002); Destexhe et al. (2003))2. Considering a MT neuron i, its membrane potential
uMT

i (t) evolves in time according to the conductance-driven equation:

τ
duMT

i (t)
dt

= Gexc
i (t)

(
Eexc − uMT

i (t)
)

+ Ginh
i (t− δ)

(
Einh − uMT

i (t)
)

+ gL
(
EL − uMT

i (t)
)
, (7.3)

where Eexc, Einh and EL = 0 are constants with typical values of 70mV, -10mV and
0mV, respectively. According to equation (7.3), uMT

i (t) will belong to the interval[
Einh, Eexc

]
and it will be driven by several influences:

• The first term of equation (7.3) refers to input pre-synaptic neurons and it will
push the membrane potential uMT

i (t) towards Eexc, with a strength defined by
Gexc

i (t).

• The second term of equation (7.3) also coming from pre-synaptic neurons will
drive uMT

i (t) towards Einh with a strength Ginh
i (t).

• The third term of equation (7.3) will drive uMT
i (t) towards the resting potential

EL with a constant strength given by gL.

The constant δ, typically 30ms, is the delay associated to the inhibitory effect.
The MT neuron i is part of a neural network where the input conductances Gexc

i (t)
and Ginh

i (t) are obtained by pooling the activity of all the pre-synaptic neurons con-
nected to it. Each MT neuron has a receptive field obtained from the convergence of

2The conductance-based neuron model is a classical neuron representation. Another models are also
possible but their respective differences and performances are out of the scope of this thesis.
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pre-synaptic afferent V1 complex cells (see Figure 5.10). The excitatory inputs form-
ing Gexc

i (t) are related with the activation of the classical receptive field (CRF) of the
MT neuron; whereas Ginh

i (t) afferent are the cells forming the surround interactions
that could modulate or not the response of the CRF (Xiao et al. (1997b, 1995)) (see
Figure 7.2). The surround does not elicit responses by itself, it needs the CRF acti-
vation to be considered. According to this, the total input conductances Gexc

i (t) and
Ginh

i (t) of the post-synaptic neuron i are defined by

Gexc
i (t) = max

(
0,
∑
j∈Ωi

wijr
V 1
j −

∑
j∈Ω′

i

wijr
V 1
j

)
,

Ginh
i (t) =

{ ∑
j∈Φi

wijr
V 1
j if Gexc

i (t) > 0
0 otherwise

, (7.4)

where

Ωi = {j ∈ CRF | ϕij < π/2}, (7.5)

Ω′
i = {j ∈ CRF | ϕij > π/2}, (7.6)

Φi = {j ∈ Surround | ϕij < π/2}, (7.7)

and where the connection weight wij is the efficacy of the synapse from neuron j to
neuron i, which is proportional to the angle ϕij between the two preferred motion
direction-selectivity of the V1 and MT cell. It is important to remark that the values
of the conductances will be always greater or equal to zero, and their positive or
negative contribution to uMT

i (t) is due to the values of Eexc and Einh.

Figure 7.2: MT center-surround construction from V1 neurons. V1 neurons residing inside the clas-
sical receptive field (CRF) of the ith MT neuron form part of the excitatory conductance Gexc

i (t). Anal-
ogously, V1 neurons lying inside the surround of the ith MT neuron form part of the inhibitory conduc-
tance Ginh

i (t).

About the surround definition in equation (7.7), in Section 5.2.2 we introduced
the different center-surround interactions as described by neurophysiology. In this
chapter, we implemented this variety of center-surround interactions following the
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description given in Figure 5.14, which consists in four different configurations: only
CRF, symmetric surround, bilateral asymmetric surround and unilateral symmetric
surround.

Remark: Speed coding relies on complex and unclear mechanisms. Many studies on MT focused

on motion direction selectivity (DS), but very few on speed selectivity (see, e.g., Priebe et al. (2003);

Perrone and Thiele (2001); Liu and Newsome (2003)). Here we only considered the motion direction and

not the motion speed, as can be seen in (7.4): Our MT cells pool V1 cells just considering their motion

DS, and not their spatiotemporal tuning. However, note that it could be also possible to pool differently

V1 cells in order to extract some speed information, as proposed for example in Simoncelli and Heeger

(1998); Grzywacz and Yuille (1990); Perrone (2004). As a result, one could obtain a velocity field

qualitatively similar to an optical flow (i.e., one velocity per position). �

7.2 TOWARDS HUMAN ACTION RECOGNITION

7.2.1 Supervised classification

Until now, we described a V1-MT model which is inspired by some biological findings.
But, how could we use the output of MT neurons in a real application such as human
action recognition?

The output of MT neurons will be here used to define feature vectors representing
the motion information of the input stimulus, in our case a real video sequence. The
feature vector definition has no biological inspiration and it represents the correspon-
dence between the input space (here the space of sequences) and a feature space.

Using the feature vectors obtained from MT cells’ output, we considered the sim-
pler case of supervised classification which means that for some inputs, the class is
known (training set). Then, considering a new sequence to be analyzed, we will esti-
mate the corresponding feature vector and find the best class with a classifier.

7.2.2 Mean Motion Map: Definition of feature vector and distance

In this section, we define the feature vectors as mean motion maps, which represent
averaged MT cells’ activity inside a temporal window, as well as a distance to compare
different mean motion maps.

At time t, given a video stream L(x, t) between [t − ∆t, t], we define the feature
vector (from now on called mean motion map) as the vector which represents the
average membrane potential of the MT neurons inside a sliding temporal window
[t−4t, t]:

HI(t,4t) =
{
γL

j (t,4t)
}

j=1,...,Nl×Nc
, (7.8)
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with γL
j (t,4t) = 1

∆t

∫ t
t−4t uMT

j (s)ds, and where Nl is the number of MT layers and Nc

is the number of MT cells per layer. This procedure is summarized in Figure 7.3.

Figure 7.3: Mean motion map definition diagram. The membrane potential of the ith MT cell, rMT
i (t),

is averaged inside a sliding temporal window of length ∆t. The averaged membrane potential γI
i (t, ∆t)

fills the ith position of the mean motion map of length Nl ×Nc.

One interesting aspect of the mean motion map defined in (7.8) is its invariance to
the sequence length and starting point (for ∆t high enough depending on the scene).
It also includes information regarding the temporal evolution of the activation of MT
cells, respecting the causality in the order of events. Besides, the use of a sliding
temporal window allows us to include action changes inside the sequence.

Now, in order to evaluate the similarities between two mean motion maps
HI(t,4t) and HJ(t′,4t′), we propose the following discrimination measure:

D(HI(t,4t),HJ(t′,4t′)) =
1

Nl Nc

Nl Nc∑
l=1

(γI
l (t,4t)− γJ

l (t′,4t′))2

γJ
l (t,4t) + γJ

l (t′,4t′)
. (7.9)

This measure refers to the triangular discrimination introduced by Topsoe (2000).
Other measures derived from statistics, such as Kullback-Leiber (KL) could also be
used. The Kullback-Leiber measure was also tested showing no significant improve-
ments. Note that (7.9) and the motion representation (7.8) can be seen as an ex-
tension of Zelnik-Manor and Irani (2006), where a similar measure was proposed by
the authors to measure the distance between the empirical distributions of each se-
quence.

7.3 EXPERIMENTS

7.3.1 Basic validations

Before considering the human action recognition application, the model was tested
with simple motion sequences normally used in neurophysiology and psychophysics,
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such as, drifting gratings and barberpoles. The results shown in Figure 7.4 and Fig-
ure 7.5 are polar diagrams with the outputs of V1 and MT populations. V1 population
is tuned to 12 different spatial orientations and 9 different spatiotemporal frequen-
cies. Neurons with the same spatial orientation tuning were grouped and its normal-
ized activity is shown in the respective polar diagrams. MT population is formed by 8
neurons tuned to 8 different spatial orientations. The MT cells considered here have
no surround interactions, which means that only the activation of the CRF is taken
into account.

See later: More validations using classical psychophysical stimuli, such as barberpoles and plaids,

will be shown in Chapter 9. �

We also tested the model on natural sequences. For example, we show in Figure
7.6 the outputs MT neurons for a sequence from the Weizmann database (jumping-
jack denis). The outputs of the MT neurons most activated are coded by colors follow-
ing the orientation code shown at the top of Figure 7.6. As we can see, the activation
of MT neurons follows the performance of the action, in this case, jumping-jack.

7.3.2 Implementation detail for human action recognition

Input stimuli: are natural image sequence where a single action is being per-
formed. The luminosity and contrast were normalized and the images were resized
to 210×210 pixels. The person performing the action was tracked and the video were
therefore cropped in order to have the action in the center of the images. We consid-
ered 25 frames per second. Samples of the video used in our system are shown in
Figure 7.7.

V1 settings: Given V1 cells modeled by (5.9), we consider 9 layers of V1 cells. Each
layer is built with V1 cells tuned with the same spatiotemporal frequency and 8 dif-
ferent orientations. The 9 layers of V1 cells are distributed in the frequency space in
order to tile the whole space of interest (maximal spatial frequency of 0.5 pixels/sec
and a maximal temporal frequency of 12 cycles/sec). The centers of the receptive
fields are distributed according to a radial log-polar scheme with a foveal uniform
zone. The limit between the two regions is given by the radius of the V1 fovea R0 (80
pixels). The cells with an eccentricity less than R0 have an homogeneous density and
receptive fields size. The cells with an eccentricity greater than R0 have a density
and a receptive field size depending on its eccentricity, giving a total of 4473 cells per
layer.

MT settings: Similarly to V1, MT cells are also distributed in a log-polar architec-
ture, but in this case R0 is 40 pixels giving a total of 144 cells per layer. Different
layers of MT cells conform our model. Four different surround interactions were used
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Figure 7.4: Response of a population of V1 and MT neurons to a drifting grating as input stimulus.
The grating drifts in the direction of 180◦. V1 population is spatially located at the center of the se-
quence. V1 population is formed with 9 different spatiotemporal frequencies and 12 different spatial
frequencies. V1 cells sharing the same spatial orientation were grouped and their normalized activa-
tion for each spatial direction are displayed in their respective polar diagram. MT population is also
spatially located at the center of the sequence, and it is tuned for eight different spatial orientations.
The normalized activation of the MT neurons are displayed in its respective polar graph

Figure 7.5: Response of a population of V1 and MT neurons to a barberpole of aspect ratio 5:1. The
barberpole drifts in the direction of 315◦. V1 neurons were placed at the terminators and center of the
barberpole, showing for each case, the effect of the respective border in the activation of V1 and MT
neurons.
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Figure 7.6: Evolution of MT cells along time for a natural video from Weizmann database. The video
is a person performing the jumping-jack action, and the snapshots at different times show the evolution
of the most 20 activated MT cells. The color of each MT cell follows the orientation color code shown at
the top.
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in the MT construction (see Fig. 3.9). Each layer, with a certain surround interaction,
has 8 different directions.

7.3.3 Experimental Protocol

In order to evaluate the performance of our algorithm, we used the Weizmann
database3. This database contains 9 different samples of different people doing 9
actions: bending (bend), jumping jack (jack), jumping forward on two legs (jump),
jumping in place on two legs (pjump), running (run), galloping sideways (side), walk-
ing (walk), waving one hand (wave1) and waving two hands (wave2). The number of
frames per sequence is variable and depends on the action. A representative frame
of each action is shown in Figure 7.7.

Figure 7.7: Sample frames of each of the nine actions conforming the Weizmann database. The
actions are: bending (bend), jumping-jack (jack), jumping-forward-on-two-legs (jump), jumping-in-place-
on-two-legs (pjump), running (run), galloping-sideways (side), walking (walk), waving-one-hand (wave1)
and waving-two-hands (wave2).

We selected the actions of 4 or 6 (as in Jhuang et al. (2007)) random subjects as
training set (total of 36 or 64 sequences, respectively) and use the remaining 5 or 3
subjects for the test set (45 or 27 sequences, respectively). All the mean motion maps
of the training set were obtained and stored in a data container.

We used a standard classifier4 defined as follows: When a new input sequence be-
longing to the test set is presented to the system, the mean motion map is calculated
(with ∆t covering here all the sequence) and it is compared using (7.9) to all mean
motion maps stored in the training set. The class of the sequence with the shortest
distance is assigned as the match class.

The experiments were done considering every possible selection of 4 or 6 subjects,

3http://www.wisdom.weizmann.ac.il/~vision/SpaceTimeActions.html
4Note that we repeated the experiments with a standard SVM classifier but we did not get significant

improvements in the recognition performance.
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giving a total of 126 or 84 experiments. As output we obtained histograms showing
the frequency of the recognition error rates.

7.3.4 Results

In order to quantify the influence of the information coded by center-surround inter-
actions, we did the experiments with the different configurations shown in Figure
3.9. The cells were combined in order to create three different mean motion maps:
just considering the CRF, CRF plus the isotropic surround interaction, and finally
considering all the cells described in Figure 3.9, i.e., with isotropic and anisotropic
surround interactions.

The recognition performance has a strong variability depending on the sequences
used to define the training set. This is summarized in the histograms shown in Fig-
ures 7.8 and 7.9. From the information contained in the histograms, we can observe
that:

• The case of gL > 0 significantly improves the performance of our system, mainly
because the constant leak term attracts the membrane potential of the cell to
its resting value (EL = 0), avoiding possible saturation.

• The case gL = 0, the effect of inhibitory surrounds (either isotropic or
anisotropic) is stronger than the case of gL = 0.25. The explanation is that
the inhibitory surround is the only mechanism to reduce the activation of the
cell. Maybe this effect can be compensated in the case of gL = 0.25 by adding
more relevance to the response of the cells with inhibitory surround. The case
gL = 0 converts the leak conductance into a conductance which fully depends on
the response of the inhibitory surrounds.

In the case where 6 random subjects were taken to construct the training set, we
compared our results with Jhuang et al. (2007). As previously mentioned, we esti-
mated the performance of our approach based on all the possible 84 combinations,
and not only on 5 random trials (as in Jhuang et al. (2007)). In Figure 7.10, we show
the histogram with the different recognition error rates obtained with our approach
using the mean motion maps generated for the CRF and isotropic/anisotropic sur-
round interactions cells. The average recognition rate of 98.9% (i.e., mean error rate
of 1.1%), which exceeds the results obtained by Jhuang et al. (2007).

Both, Figure 7.8 and 7.8 have a best recognition performance when all the sur-
round geometries described in Figure 5.14 are considered. A significantly improve-
ment due to different surround geometries is obtained in the case with no leak, i.e.
gL = 0, where the value of the membrane potential of MT neurons is really modulated
by the different surround configurations. Our interpretation is that singularities in
the velocity field are reflected in this modulation.

To test the robustness of our approach, we considered input sequences with differ-
ent kinds of perturbations (Figure 7.11): noise (case (2)), legs-occlusion (case (3)) and
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(a)

(b)

Figure 7.8: Recognition error rate obtained for Weizmann database. We took all the 126 combinations
possibles considering 4 subjects in the training set (TS). (a) Results obtained for gL = 0. (b) Results
obtained for gL = 0.25. All the experiments were performed using the three surround-interactions
defined in Figure 3.9: just CRF (black bars), CRF plus isotropic surround suppression (gray bars) and
CRF plus isotropic and anisotropic surround suppression (red bars). The mean values for the recognition
error rate of each group of cells are shown as arrows at the top of each graph: (a) 15.83%, 19.29%, 9.01%.
(b) 7.62%, 8.97%, 7.58%.
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(a)

(b)

Figure 7.9: Recognition error rate obtained for Weizmann database. We took all the 84 combinations
possibles considering 6 subjects in the training set (TS). (a) Results obtained for gL = 0. (b) Results
obtained for gL = 0.25. All the experiments were performed using the three surround-interactions
defined in Figure 3.9: just CRF (black bars), CRF plus isotropic surround suppression (gray bars) and
CRF plus isotropic and anisotropic surround suppression (red bars). The mean values for the recognition
error rate of each group of cells are shown as arrows at the top of each graph: (a) 3.07%, 3.17%, 0.93%.
(b) 5.70%, 7.40%, 5.50%.
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Figure 7.10: Histograms obtained from the recognition error rates of our approach using all the cells
defined in Figure 3.9 for Weizmann database and the same experiment protocol used in Jhuang et al.
(2007). The gray bars are our histogram obtained for gL = 0.25. (a) Mean recognition error rate obtained
by Jhuang et al. (2007) (GrC2, dense C2 features): 8.9%/±5.9. (b) Mean recognition error rate obtained
by Jhuang et al. (2007) (GrC2, sparse C2 features): 3.0%/±3.0. (c) Mean recognition error rate obtained
with our approach: 1.1%/± 2.1.

dwalk

dside

(1) (2)

(3) (4)

Figure 7.11: Results obtained for the robustness experiments carried out for the three input se-
quences represented by the snapshots shown for normal-walker (1), noisy sequence (2), legs-occluded
sequence (3) and moving-background sequence (4). In all the cases the recognition was correctly per-
formed as walk and the second closest distance was to the class side. The red bars indicate the ratio
between the distance to walk class and the distance to side class (dwalk/dside). The experiments were
done for the three configurations of surround-suppression: (a) just CRF, (b) CRF with isotropic surround
and (c) CRF with isotropic/anisotropic surround (gL = 0.25).
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moving textured background (case (4)). Both noisy and legs-occluded sequences were
created starting from the sequence shown in Figure 7.11(1), which was extracted from
the training set for the robustness experiments. The legs-occluded sequence was cre-
ated placing a black box on the original sequence before the centered cropping. The
noisy sequence was created adding Gaussian noise with a variance of ±30 (for image
luminosity varying between 0 and 255). The moving-background sequence was taken
from Blank et al. (2005). A graph with the ratio between the shortest distance to walk
class and the distance to the second closest class (side for the all the cases) is shown
in Figure 7.11. For the original sequence and the three modified input sequences the
recognition was correctly performed as walk. Also, the inclusion of the anisotropic
surround interaction makes the model slightly less sensitive to occlusions or noise.
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CHAPTER 8

SPIKING MODEL

IMPLEMENTATION

“Spike is the code”
– William Bialek (1997)
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OVERVIEW

In this chapter we define a spiking version of the V1-MT core architecture pro-
posed in Chapter 5, following the same question: can this bio-inspired model be used
in human action recognition?

The spiking neurons are modeled as a conductance-based integrate-and-fire neu-
rons. The spike generation mechanism acts as an output nonlinearity that models
some of the nonlinearities found in real V1 and MT neurons.

The performance of this architecture is tested with the Weizmann database1. The
spike trains obtained by MT neurons are processed in two different manners in or-
der to define two motion maps: mean motion map and synchrony motion map. We
evaluate the performance of these two motion maps in the human action recognition
task.

Contributions of this chapter

1. Implementation of a spiking V1-MT feedforward architecture for human action
recognition.

2. Two complementary interpretations of the neural code are considered to clas-
sify actions: mean firing rate of each neuron and synchrony between pairs of
neurons.

3. Study of the role of center-surround diversity in MT cells for human action
recognition performance.

Keywords: human action recognition, motion maps, mean motion map, synchrony
motion map, spikes, spike train analysis, neural code, spike train synchronization,
mean firing rate.

Organization of this chapter:
Section 8.1 describes the background for spiking neurons and spike train analysis.

Section 8.2 describes the specific implementation for V1 and MT neurons. Section 8.3
show how the output of MT neurons can be used to define two different motion maps.
Section 8.4 defines the settings for V1 and MT neurons, the experimental protocol and
the human action recognition performance through different measures: recognition
error rate, confusion matrices and robustness.

1http://www.wisdom.weizmann.ac.il/~vision/SpaceTimeActions.html
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8.1 SOME SPIKING BACKGROUND

8.1.1 Introduction

The output of a spiking neural network is a set of events, called spikes, defined by
their occurrence times, up to some precision. Spikes represent the way that the ner-
vous system choose to encode and transmit the information. But decoding this in-
formation, that is understanding the neural code, remains an open question in the
neuroscience community.

There are several hypotheses on how neural code is formed, but there is a consen-
sus on the fact that rate, i.e., the average spiking activity, is certainly not the only
characteristic analyzed by the nervous system to interpret spike trains (see, e.g., some
early ideas in Perkel and Bullock (1968)). Let us discuss two additional examples.

What about the rank?

For example, rank order coding could explain our performance in ultra-fast catego-
rization. In Thorpe et al. (1996), the authors show that the classification of static
images can be performed by the visual cortex within very short latencies: 150
ms and even faster. However, if one consider latency times of the visual stream
(Nowak and Bullier (1997)), such timings can only be explained by a specific architec-
ture and efficient transmission mechanisms. As an explanation to the extraordinary
performance of fast recognition, rank order coding was introduced (Thorpe (1990);
Gautrais and Thorpe (1998)): which means, to interpret the neural code by consider-
ing the relative order of spiking times. The idea is that most highly excited neurons
fire in average more but also sooner. With this idea of rank order coding, the au-
thors in fact developed a complete theory of information processing in the brain by
successive waves of spikes (VanRullen and Thorpe (2002)). Interestingly, the infor-
mation carried by this first wave has been confirmed by some recent experiments in
Gollisch and Meister (2008), where the authors showed that certain retinal ganglion
cells encode the spatial structure of a briefly presented image with the relative timing
of their first spikes.

What about synchronies and correlations?

Another example of relevant spike train characteristics could be synchronies and
correlations. The binding-by-synchronization hypothesis holds that neurons that
respond to features of one object fire at the same time, but neurons responding to
features of different objects do not necessarily. In vision, neuronal synchrony could
thereby bind together all the features of one object and segregate them from features
of other objects and the background. Several studies have supported this hypothesis
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by showing that synchrony between neuronal responses to the same perceptual object
is stronger than synchrony between responses to different objects. Among the numer-
ous observations in this direction, let us mention e.g., Neuenschwander et al. (1999);
Fries et al. (2001); Grammont and Riehle (2003) and Biederlack et al. (2006).2

But, what about spikes in real vision applications?

Up to our knowledge, there are very few attempts to use spikes in real applications.
Moreover, existing work concerns only static images. For example, let us mention
two contributions about image recognition (see, e.g., Thorpe (2002) as an applica-
tion of rank order coding) or image segmentation (see, e.g., Wang and Terman (1995)
modeled by oscillator networks), which refer respectively to the two characteristics
mentioned above: rank and synchronies.

But analyzing spikes means being able to correctly generate them, which is a
difficult issue. At the retina level, some models exist, such as, Thorpe (2002) and
Wohrer and Kornprobst (2009) with different degrees of plausibility. When we go
deeper in the visual system, we require even more simplifications since it is not pos-
sible to render the complexity of all the successive areas and neural diversity. Here,
we propose a simplified spiking model of the V1/MT architecture with one goal: Can
the spiking output be exploited in order to extract some content like the action taking
place?3

8.1.2 From spikes to spike trains

The elementary units of the central nervous system are neurons. Neurons are highly
connected to each other forming networks of spiking neurons. The neurons collect
signals from other neurons connected to it (presynaptic neurons), do some non-linear
processing, and if the total input exceeds a threshold, an output signal is generated.

The output signal generated by the neuron is what is known as spike or action-
potential: it is a short electrical pulse that can be physically measured and has an
amplitude of about 100mV and a typical duration of 1-2ms. A chain of spikes emitted
by one neuron is called spike train. The neural code corresponds to the pattern of
neuronal impulses (see also Gerstner and Kistler (2002)).

Although spikes can have different amplitudes, durations or shapes they are typi-
cally treated as discrete events. By discrete events, we mean that in order to describe

2Note that the link between synchrony and segmentation is still controversial. Results could
sometimes be explained by other mechanisms taking over the segmentation by synchrony (see, e.g.,
Roelfsema et al. (2004)).

3In spite of these numerous hypothesis, "decoding" the neural code remains an open question in
neuroscience (Victor and Purpura (1996); Rieke et al. (1997); Fellous et al. (2004)), which is far beyond
the scope of this work. Different metrics or weaker similarity measures between two spike trains have
also been proposed (see Cessac et al. (2008) for a review).
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a spike train, one only needs to know the succession of emission times:

Fi = {. . . , tni , . . .}, with t1i < t2i < . . . < tni < . . . , (8.1)

where tni corresponds to the nth spike of the neuron of index i.

8.1.3 Interpretations of the neural code

The set of all spikes from a set of neurons in a period of time is generally represented
in a graph called raster plot, as illustrated in Figure 8.1.

The question is to know how this pattern of neuronal impulses is analyzed by the
nervous system. The most simple and intuitive is to estimate the mean firing rate
over time, which is the average number of spikes inside a temporal window (rate
coding). But what makes the richness of such representation is the many other ways
to analyze it. For example, one thought about rate coding over several trials or over
population of neurons, time to first spike, phase, synchronization and correlations,
interspike intervals distribution, repetition of temporal patterns, etc.

Figure 8.1: Example of a raster plot and illustration of some different methods to analyze the neural
code (see text for more details). Each horizontal line can be interpreted as an axon in which we see
spikes traveling (from left to right).

8.1.4 Spike train analysis: Example of two measures

Given spike trains as output of a spiking network of neurons, let us propose in this
section the two measures we chose to describe its activity: the mean firing rate of
a spike train and a synchrony measure between pairs of spike trains. These two
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measures will be then directly used in the action recognition application described in
Section 8.4.

Remark: : Note that we do not consider high-level statistics of spike trains (Rieke et al. (1997)), since

this requires large ergodic spike sequences, whereas we are interested here in recognition tasks from

non-stationary spike trains generated by some dynamic input. Also, we do not considered spike-train

metrics in the strict sense (Victor and Purpura (1996)), since we do not have enough knowledge from the

biology to predict the firing times in a deterministic way. For the same reason, we do not compare, here,

spike patterns (Fellous et al. (2004)). These aspects will be perspectives of this thesis. �

Measure 1: Mean firing rate of a neuron

Let us consider a spiking neuron i. The spike train Fi associated to this neuron is
defined in (8.1). We defined the windowed firing rate γi(·) by

γi(t, ∆t) =
ηi(t−∆t, t)

∆t
, (8.2)

where ηi(·) counts the number of spikes emitted by neuron i inside the sliding time
window [t−∆t, t] (see Figure 8.2 and, e.g., Dayan and Abbott (2001)).

Measure 2: Synchrony between two spike trains

Let us consider the recent approach proposed by Kreuz et al. (2007) to estimate the
similarity between two spike trains, as a measure of synchrony. The authors proposed
to compute first the interspike interval (ISI) instead of the spike as a basic element
of comparison. The use of ISI has the main advantage to be parameter-free and self-
adaptive, so that there is no need to fix a time scale beforehand ("binless") or to fit
any parameter.

So, for the neuron i the ISI representation ISIi(t) is given by

ISIi(t) = min(t(f)
i | t(f)

i > t)−max(t(f)
i | t(f)

i < t), (8.3)

for t
(f)
i < t. Considering the ISI representation of two neurons i and j, the next step

is to calculate the ratio Rij(t) defined as

Rij(t) =


ISIi(t)
ISIj(t)

− 1 if ISIi(t) ≤ ISIj(t),

−
(

ISIj(t)
ISIi(t)

− 1
)

otherwise.
(8.4)

Rij(t) will be zero in case of completely synchrony between ISIi(t) and ISIj(t). In the
cases of a big difference between the two ISI representation, Rij(t) will tend to ±1.
(see Figure 8.3).

Having the ratio Rij(t) it is possible to calculate, for a finite time ∆t, a measure
of spike train distance ζij(t;∆t), which is an estimator of the spike train synchrony
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between neurons i and j.

ζij(t;∆t) =
1

∆t

∫ t

t−∆t
|Rij(s)|ds. (8.5)

Remark: : Completely synchrony ζij(·) = 0 was assigned for two cells not emitting spikes, while the

maximal desynchronization ζij(·) = 1 was assigned to the case where only one cell emitted spikes. �

8.1.5 Spiking neuron modelization

Many spiking neuron models have been proposed in the literature. They differ by
their biological plausibility and their computational efficiency (see Izhikevich (2004)
for a review).

The V1 and MT cells will be here modeled as a conductance-driven integrate-and-
fire neuron (Wielaard et al. (2001); Destexhe et al. (2003)). Considering a neuron i,
defined by its membrane potential ui(t), the integrate-and-fire equation is given by:

dui(t)
dt

= Gexc
i (t)(Eexc − ui(t)) + Ginh

i (t)(Einh − ui(t)) + gL(EL − ui(t)) + Ii(t), (8.6)

with the spike emission process:

• The neuron i will emit a spike when the normalized membrane potential of the
cell ui(t) reaches the threshold µ, i.e., ui(t) = µ.

• ui(t) is then reinitialized to its resting potential EL.

The typical values for the reverse potentials Eexc, Einh and EL are 0mv, -80mV and
-70mV, respectively (see Figure 8.4 for an illustration). The neuron membrane po-
tential ui(t) will evolve according to inputs through either conductances (Gexc

i (t) or
Ginh

i (t)) or external currents (Ii(t)). Gexc
i (t) is the normalized excitatory conductance

directly associated with the pre-synaptic neurons connected neuron i. The conduc-
tance gL is the passive leaks in the cell’s membrane. I(t) is an external input current.
Finally, Ginh

i (t) is an inhibitory normalized conductance dependent on, e.g., lateral
connections or feedbacks from upper layers.

8.2 SPIKING V1-MT ARCHITECTURE

8.2.1 V1 neuron implementation

The response of the V1 complex cell -formed as a combination of the V1 simple cells
defined in (5.2)- is analog. To transform the analog response into a spiking response,
the cell will be modeled as a conductance-driven integrate-and-fire neuron described
in (8.6).
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Figure 8.2: Mean firing rate of a spike train

Figure 8.3: Synchrony between the spike trains of a pair of neurons. Fi and Fj are the spike trains
of MT neurons i and j, respectively. The respective ISI representations defined in (8.3) are shown as
ISIi(t) and ISIj(t). Finally, the ratio between ISIi(t) and ISIj(t) is shown as Rij(t).
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Figure 8.4: Temporal evolution of the membrane potential of a neuron and its corresponding spikes.
A spike is generated when the membrane potential exceeds the threshold µ (EL < µ < Eexc). When the
spike is emitted membrane potential returns to its resting value EL.

So, let us consider a spiking V1 complex cell i whose center is located in xi =
(xi, yi) of the visual space. For this neuron, Gexc

i (t) is the normalized excitatory con-
ductance directly associated with the pre-synaptic neurons connected to V1 cells. The
external input current Ii(t) is here associated with the analog V1 complex cell re-
sponse. So, Ii(t) of the ith cell in (8.6) is modeled as

Ii(t) = kexcCi(xi, t), (8.7)

where kexc is an amplification factor, Ci(·) refers to the complex cell response defined
in (5.9). For V1 neuron implementation, the leak conductance, the inhibitory and
excitatory conductances of (8.6) are not considered, so that:

Ginh
i (t) = 0,

Gexc
i (t) = 0, (8.8)

gL = 0,

8.2.2 MT neuron implementation

Similarly, let us model MT cell i as a conductance-driven integrate-and-fire neuron
(see equation (8.6)).

Each MT cell has a receptive field made from the convergence of afferent V1 com-
plex cells (see Figure 5.10). Those inputs will be excitatory or inhibitory depending
on the characteristic and shape of the corresponding MT receptive fields (Xiao et al.
(1997b, 1995)).

The MT neuron i is a part of a spiking network where no external input current
is considered (Ii(t) = 0) and the input conductances Gexc

i (t) and Ginh
i (t) are obtained

considering the activity of all the pre-synaptic neurons connected to it (see Figure
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5.10 and equation 5.14). For example, if a pre-synaptic neuron j has fired a spike at
time t

(f)
j , this spike reflects an input conductance to the post-synaptic neuron i during

a time course α(t− t
(f)
j ). So we have:

Gexc
i (t) =

∑
j∈Ω

w+
ij

∑
f

α(t− t
(f)
j ; τs),

Ginh
i (t) =

∑
j∈Φ

w−
ij

∑
f

α(t− t
(f)
j ; τs), (8.9)

where the coefficients w+
ij (w−

ij) are the efficacy of the positive (negative) synapse from
neuron j to neuron i (see Gerstner and Kistler (2002) for more details) and their re-
spective values are defined in equation (5.13). The time course α(s; τs) of the post-
synaptic current in (8.9) can be modeled as an exponential decay with time constant
τs as follows

α(s; τs) =
(

s

τs

)
exp

(
− s

τs

)
. (8.10)

The domains Ω and Φ, are defined according to the shape of the MT classical receptive
field and MT surround, respectively. Inspired by the organization of different center-
surround interactions reported by Born (2000) (see more details in Section 3.2.3), we
implemented the three types of center-surround interactions defined in Section 5.2.2,
specifically in Figure 3.9.

8.3 TOWARDS HUMAN ACTION RECOGNITION

Similarly to Section 7.2, the output of MT neurons will be used to construct fea-
ture vectors representing the motion information of the input stimulus. These feature
vectors will be further used in a supervised classifier to perform human action recog-
nition.

In this chapter, two different feature vectors are proposed. Those feature vectors:
mean motion map and synchrony motion maps, are based on the spike train measures
defined in Section 8.1.4.

8.3.1 Mean Motion Map: Definition of feature vector

The mean motion map (equivalent to the mean motion map defined in Section 7.2)
HL(·), representing the input stimulus L(x, y, t), is defined by

HL(t,4t) =
{
γL

j (t,4t)
}

j=1,...,Nl×Nc
, (8.11)

where Nl is the number of MT layers and Nc is the number of MT cells per layer.
Each element γL

j with j = 1, ..., Nl × Nc is the windowed firing rate defined in (8.2)
(see Figure 7.3).

The comparison between two mean motion maps HL(t,4t) and HJ(t,4t), is com-
puted using the distance measure defined in equation (7.9).
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8.3.2 Synchrony Motion Map: Definition of feature vector and dis-
tance

As it is shown in Section 8.1.4, for each pair of cells {i, j} it is possible to obtain a
measure of synchrony using ζij(·) defined in (8.5).

Let us consider Nl population of MT cells. For each population, we created a
matrix containing the values of ζij(t;∆t) obtained to every pair of cells {i, j} in the
population. The values of ζij(t;∆t) were computed inside a sliding time window of
size ∆t. So, each sequence L will be represented by a synchrony motion map H̃L(t, ∆t)
defined as

H̃L(t, ∆t) = {DL
k (t;∆t)}k=1..Nl

, (8.12)

where DL
k (·) = {ζmn(·)}m=1..Nc,n=1..Nc is a matrix of Nc × Nc elements containing the

measures ζmn(·) between the mth and nth neurons of the kth population of MT cells
defined in (8.5). The H̃L construction can be summarized in Figure 8.5.

Figure 8.5: Schematic diagram summarizing the synchrony motion map construction for the MT
neurons located at two different positions of the image. In this case, there are 8 populations of MT
neurons (Nl = 8), obtaining like this 8 different DL

k (t; ∆t) matrices containing the respective ζij values.

The comparison between two synchrony motion maps H̃L(t, ∆t) and H̃J(t′,∆t′). is
defined by the euclidean distance

D̃(H̃L(t, ∆t), H̃J(t′,∆t′)) =
√∑

Nl

‖DL
k −DJ

k‖2. (8.13)
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Table 8.1: Parameters used for V1 and MT layers.

V1 MT
Fovea radius 80[pixels] 40[pixels]
Layer radius 100[pixels] 100[pixels]
Cell density in fovea 0.4[cells/pixel] 0.1[cells/pixel]
Eccentricity decay 0.02 0.02
Radius receptive field in fovea 2σV 1[pixels] 9[pixels]
Number orientations 8 8
Number cells per layer 3302 161

8.4 EXPERIMENTS

8.4.1 Implementation detail for human action recognition

Input stimuli: Same as the stimuli described in Section 7.3.2.

V1 settings: V1 has a total of 72 layers, formed by 8 spatial orientations and 9
different spatiotemporal frequencies, giving a total of 3302 cells per layer. Following
the biological result mentioned in Watson and Ahumada (1983) the value of σV 1 is
0.5622/f . The 72 layers of V1 cells are distributed in the frequency space in order
to tile the whole space of interest. We considered a maximal spatial frequency of 0.5
pixels/sec and a maximal temporal frequency of 12 cycles/sec.

MT settings: In the case of MT, 8 (1×8 orientations) or 24 (3×8 orientations) layers
were used depending on the center-surround configuration defined in Figure 3.9.

General V1 and MT settings are shown in Table 8.1.

8.4.2 Experimental protocol

We ran the experiment using Weizmann4 database. Weizmann database consists in
9 different subjects performing 9 different actions. A representative frame of each
action is shown in Figure 7.7. The number of frames per sequence is variable and
the original video streams were resized and centered to have sequences of 210×210
pixels.

The performance of the bio-inspired spiking V1-MT model is here evaluated in the
human action recognition application. The system follows the architecture described
in Figure 5.1. The outputs of V1 motion detectors feed V1 neurons as an external
current. The spike trains generated by V1 neurons feed the MT layers where the

4http://www.wisdom.weizmann.ac.il/~vision/SpaceTimeActions.html
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activation of each MT neuron depends on the activation of the V1 stage. Figure 8.6
shows the spike trains generated by MT neurons for two different sequences of Weiz-
mann database.

Figure 8.6: Raster plots obtained considering 161 MT cells with only CRF of a given orientation in
two different actions: jumping-jack and bending. Looking at the raster plots obtained, is evident that
the information contained into the spike trains is much richer than a simplified mean firing rate. The
frame rate is 25 frames per seconds.

To evaluate the recognition performance of our approach using the motion maps
defined in Sections 8.3.1 and 8.3.2, we followed a similar experimental protocol than
the one proposed by Jhuang et al. (2007). The mean motion maps and synchrony
motion maps of all the 81 sequences forming Weizmann database were calculated,
removing in both cases the first 5 frames containing initialization information. A real
example showing the synchrony motion maps obtained for two different sequences of
the Weizmann database, and for 8 populations of MT neurons (Nl = 8) is shown in
Figure 8.7.

Similarly to Section 7.3.3, the training set was built considering actions of 6 dif-
ferent subjects (6 subjects × 9 actions = 54 motion maps). The testing set was built
with the remaining 3 subjects (3 subjects × 9 actions = 27 motion maps). Unlike
Jhuang et al. (2007), we ran all the possible training sets (84) and not only 5 random
trials. Each motion map is compared to every motion map in the training set. The
match class will be the class associated to the motion map with the lowest distance
(according to equation (8.5)).

8.4.3 Results

For each training set, the experiment was performed twice: one time considering
8 layers of MT cells (Nl = 8) with the activation of the CRFs for the 8 different

137



Figure 8.7: Matrices conforming the synchrony motion maps defined in (8.12). Each matrix shows
the synchronization (see (8.5)) between the spike trains of iso-oriented cells members of the same MT
population. (a) Synchrony motion map for a jumping-jack sequences of Weizmann database. (b) Syn-
chrony motion map for a bending sequence of Weizmann database. One observes significant differences
between the synchrony maps of both actions.
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Table 8.2: Mean recognition error rates and standard deviation obtained by our approach and by
Jhuang et al. (2007).

Mean error rate ± STD #trials

Jhuang et al. 8.9%/± 5.9 5
GrC2 dense C2 features

Jhuang et al. 3.0%/± 3.0 5
GrC2 dense C2 features

Mean motion maps 9.08%± 4.40 84
CRF

Mean motion maps 7.32%± 4.62 84
CRF + symmetric surrounds

Synchrony motion maps 13.89%± 4.95 84
CRF

Synchrony motion maps 7.19%± 5.15 84
CRF + symmetric surrounds

orientations, and a second time with 24 layers of MT cells (Nl = 24) using, for each
orientation, all the surround interactions shown in Figure 3.9. We constructed a
histogram with the different recognition error rates obtained by our approach (see
Figure 8.8) using mean motion maps and synchrony motion maps. As we can see
in Figure 8.8, the values have a strong variability and the recognition performance
highly depends on the sequences used to construct the training set, reaching in most
of the cases 100% of correct recognition.

A comparison with the results obtained by Jhuang et al. (2007) is shown in Table
8.2. It is important to remark that our results were obtained using the 84 train-
ing sets built with 6 subjects (i.e., all possible combinations) and not only 5 trials
as in Jhuang et al. (2007). As it was previously remarked, because of the high vari-
ability of classification performance depending on the training set chosen, results in
Jhuang et al. (2007) are hard to interpret.

Confusion matrices

In order to have a qualitative comparison between the quality of the human action
representation using the two motion maps defined in Section 8.3, we estimated the
confusion matrices for the 81 sequences conforming Weizmann database (see Fig-
ure 8.9). The sequences were grouped according to the action performed (total of 9
actions), and for each pair of actions the mean distance value was obtained. The ma-
trices are 9×9 and they were built using Nl = 8 (just MT CRF) and Nl = 8× 3 (using
the three MT center-surround interactions of Figure 3.9). Interestingly, despite of the
lower recognition performance of synchrony motion maps compared with mean mo-
tion maps, synchrony motion maps better separates the data belonging to different
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(a)

(b)

Figure 8.8: Histograms representing the recognition error rates obtained by our approach in Weiz-
mann database, using: MT CRFs (gray bars) and MT center-surround interactions shown in Figure 3.9
(black bars). The results were obtained using the 84 possible training sets built with 6 different sub-
jects. The respective mean values are displayed at the top of each graph (see Table 8.2 for details). (a)
Histogram obtained for mean motion maps (b) Histogram obtained using synchrony motion maps.
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classes, specially for actions were only a limited part of the body performs the motion
(waving-one-hand, waving-two-hands, bending).

Figure 8.9: Confusion matrices obtained using two different readouts: (a)-(b) mean motion maps de-
fined in (8.11) and (c)-(d) synchrony motion maps defined in (8.12). We also compare: (a)-(c) considering
only MT CRFs and (b)-(d) considering all the MT center-surround interactions defined in Figure 3.9

In order to quantify the inter-class separability we applied a simple statistical
analysis (t-student test). Applying the t-student test on the obtained distances ma-
trices we numerically observe for intra-class distances a range of t-value ∈ [0.20; 0.26]
for mean motion maps and t-value ∈ [0.29; 0.31] for synchrony motion maps, which in
term of probabilities means that the probability to have distances different of zero
is P < 0.60 and P < 0.61, respectively. A significant difference is seen in the inter-
class distances, where the range of t-values for running/all-other-sequences is t-value
∈ [1.40; 2.93] (synchrony motion maps) and t-value ∈ [0.44; 0.55] (mean motion maps).
This can be interpreted, for instance, that for jumping/walking the distances are dif-
ferent from 0 with a probability of P < 0.69 for mean motion maps and P < 0.90 for
synchrony motion maps. Although t-test values obtained for mean motion maps are
numerically higher for inter-class than intra-class distances, it appears that they are
not "significantly" higher compared to the ones obtained with the synchrony motion
maps.

Robustness

To evaluate some kind of robustness of the approach, similarly than Section 7.3.4, we
considered input sequences with perturbations. Snapshots of the sequences consid-
ered to measure the robustness of the model are shown in Figure 8.10. We considered
three kinds of perturbations: noisy sequence (Figure 8.10 (2)), legs-occluded sequence
(Figure 8.10 (3)) and moving-background sequence (Figure 8.10 (4)). Both noisy and
legs-occluded sequences were created starting from the sequence shown in Figure
8.10 (1), which was extracted from the training set for the robustness experiments.
The legs-occluded sequence was created placing a black box on the original sequence
before the centered cropping. The noisy sequence was created adding a Gaussian
noise with a variance of ±30 (for image luminosity varying between 0 and 255). The
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Table 8.3: The Null hypothesis rejection probability associated with the t-test values obtained from
the distance matrices built using mean motion maps and synchrony motion maps (case CRF + symmetric
surrounds). The corresponding action for each value is the same than the ones shown in Figure 8.9.

Mean motion map
0.59 0.70 0.71 0.69 0.68 0.62 0.67 0.68 0.72
0.70 0.59 0.69 0.68 0.72 0.65 0.70 0.70 0.74
0.71 0.69 0.60 0.66 0.68 0.63 0.68 0.69 0.72
0.69 0.68 0.66 0.60 0.72 0.62 0.68 0.69 0.75
0.68 0.72 0.68 0.72 0.60 0.59 0.64 0.66 0.72
0.62 0.65 0.63 0.62 0.59 0.59 0.61 0.64 0.65
0.67 0.70 0.69 0.68 0.64 0.61 0.58 0.64 0.69
0.68 0.70 0.69 0.69 0.66 0.64 0.64 0.58 0.68
0.72 0.74 0.72 0.75 0.72 0.65 0.69 0.68 0.59

Synchrony motion map
0.61 0.86 0.88 0.90 0.97 0.98 1.00 0.99 0.99
0.86 0.62 0.89 0.90 0.97 0.94 0.99 0.98 0.97
0.88 0.89 0.62 0.86 0.98 0.97 1.00 0.96 0.98
0.90 0.91 0.86 0.62 0.99 0.96 1.00 0.99 0.99
0.97 0.97 0.98 0.99 0.61 0.85 0.93 1.00 0.91
0.98 0.94 0.97 0.96 0.85 0.62 0.96 0.93 0.94
1.00 0.99 1.00 1.00 0.93 0.96 0.60 0.76 0.86
0.99 0.98 0.96 0.99 0.99 0.93 0.75 0.60 0.96
0.99 0.97 0.98 0.99 0.91 0.94 0.86 0.96 0.61

moving-background sequence was taken from Blank et al. (2005). Both, the origi-
nal sequence and the three modified input sequences, the recognition was correctly
performed as walking when the mean motion maps were used.

The bars of Figure 8.10 represent the ratio between the shortest distance to walk-
ing (dwalk) class and the distance to the second closest class (d∗), which can vary from
galloping-sideways to bending or jumping-forward-in-two-legs. Note that in most of
the cases the action was correctly recognized as walking, giving a ratio dwalk/d∗ < 1.
The recognition failed in the case of synchrony motion maps (a) who consider only
the CRF activation. In those cases the action was always misclassified as bending
(dwalk/dbend > 1). This performance is considerably improved if the information of the
surround interactions is added to the synchrony motion maps (case (b)), confirming
its important role in motion representation.

Comparison with the analog V1-MT architecture

The similar experimental protocol allow us to have a comparison between the recog-
nition error rates obtained in this chapter with the ones of Chapter 7. Table 8.4 shows
the mean recognition error rates and standard deviations obtained for each case.

Results in Table 8.4 show that the recognition performance is better for motion
maps obtained using a mean firing rate estimation, which is obtained using the ana-
log V1-MT architecture. The results generated for mean motion maps in the spiking
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Figure 8.10: Results obtained in the robustness experiments for the four input sequences represented
by the snapshots at the top of the image. From left to right: (1) normalwalker, (2) noisy sequence,
(3) occluded-legs sequence and (4) moving-background sequence. For each input sequence the action
recognition experiment was performed 4 times: (a) synchrony motion maps with MT CRF, (b) synchrony
motion maps with MT CRF + symmetric surrounds, (c) mean motion maps with MT CRF and (d) mean
motion maps with MT CRF + symmetric surrounds. The black bars indicate the ratio between the
distance to walking class dwalk and the distance to the second closest class d∗ (galloping-sideways,
bending or jumping-forward-in-two-legs).
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Table 8.4: Comparison of the recognition performances of the analog V1-MT architecture (Chapter 7)
and the spiking V1-MT architecture (Chapter 8).

Mean error rate ± STD

Analog V1-MT architecture
gL = 0, CRF 5.68%/± 3.8
gL = 0, CRF + isotropic surround 5.86%/± 4.2
gL = 0, CRF + isotropic/anisotropic surround 1.72%/± 2.3
gL = 0.25, CRF 1.06%/± 2.3
gL = 0.25, CRF + isotropic surround 1.37%/± 2.5
gL = 0.25, CRF + isotropic/anisotropic surround 1.01%/± 2.3

Spiking V1-MT architecture
Mean motion maps, CRF 9.08%± 4.40
Mean motion maps, CRF + symmetric surrounds 7.32%± 4.62
Synchrony motion maps, CRF 13.89%± 4.95
Synchrony motion maps, CRF + symmetric surrounds 7.19%± 5.15

V1-MT architecture cannot be directly associated to the results of the analog V1-MT
architecture because their construction mechanism are different. Also MT neurons
have in both cases different center-surround interactions.
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Part III

Motion Integration
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CHAPTER 9

THE ROLE OF V1 SURROUND

INHIBITION IN THE SOLUTION OF

MOTION INTEGRATION

Contents
9.1 The aperture problem . . . . . . . . . . . . . . . . . . . . . . . . . . 149

9.1.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

9.1.2 The aperture problem is a motion integration problem? . . . . 149

9.2 Implementation of V1 and MT neurons . . . . . . . . . . . . . . . 151

9.2.1 V1 neuron implementation . . . . . . . . . . . . . . . . . . . . 151

9.2.2 MT neuron implementation . . . . . . . . . . . . . . . . . . . . 152

9.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

9.3.1 Implementation details . . . . . . . . . . . . . . . . . . . . . . . 153

9.3.2 Experimental protocol . . . . . . . . . . . . . . . . . . . . . . . 153

9.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

147



OVERVIEW

From ambiguous motion signals, it is only possible to recover the component of mo-
tion perpendicular to the contour and not the real motion direction of objects, which
is known as the aperture problem. The aperture problem can be solved integrating
unambiguous motion signals, which are located at corners and end points. But, how
this integration is performed by the visual system?

One possibility to study motion integration is to analyze MT neurons’ response,
specially their preferred direction. The preferred direction of a MT cell has been clas-
sically measured through a drifting grating, where most of the times the cell shows
a clear direction selectivity. Studies, as the ones done by Pack et al. (Pack and Born
(2001); Pack et al. (2004); Born et al. (2006)) show that the preferred direction can
be modified depending on the input stimulus. Specifically, Pack et al. (2004) showed
that the preferred direction measured using barberpoles instead of grating is biased
toward perception, i.e., the side of the barberpole with the longest side. This preferred
direction deviation, compared to the one measured with drifting grating, depends on
the aspect ratio of the barberpole.

Here, we show that a simple mechanism, namely a delayed surround suppres-
sion in V1 neurons, can produce a significant shift in the preferred direction of MT
neurons, as it is observed with barberpoles of different aspect ratios. The surround
suppression acts like an end-stopping cell enhancing the responses of the V1 neurons
located at the border of the barberpoles, and inhibiting the activation of the V1 cells
located at the center. We also evaluated the effect of V1 surround suppression with
different stimuli, such as, plaids type I, plaids type II and unikinetic plaids.

Contributions of this chapter

1. A simple mechanism to explain the shifting on the preferred-direction of MT
neurons as a motion integration solution.

Keywords: aperture problem, center-surround interaction, V1 surround suppres-
sion, MT, barberpoles, plaid type II, unikinetic plaids.

Organization of this chapter
Section 9.1 describes the aperture problem and our motivation to deal with this

topic. Section 9.2 describes the specific implementations for V1 and MT neurons.
Section 9.3 shows the implementation details, the experimental protocol and the re-
sults obtained for barberpoles and plaids.
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9.1 THE APERTURE PROBLEM

9.1.1 Definition

As previously stated in Section 4.2.1, the motion of a homogeneous contour is am-
biguous. Because the receptive fields of motion sensitive neurons in the visual sys-
tem are finite, each neuron is observing the world inside an "aperture". Within this
aperture, different physical motion cannot be distinguished, as it can be seen in Fig-
ure 9.1, where different motion directions will elicit the same response in the motion
sensitive neuron. Unamiguous motion can be obtained from terminators, such as
end-lines or cornes. Terminators contain the real motion direction of the object. The
aperture problem is solved, i.e., the motion direction of the object is correctly per-
ceived, combining the ambiguous and unambiguous motion information, mechanism
that is called motion integration.

This aperture problem was initially studied by Stumpf (1911) (translated version:
Todorovic (1996)), and it has different variants and extensions, such as e.g., the bar-
berpole illusion which is further discussed in the next section.

Figure 9.1: (a) The motion of a contour crossing a small yelow aperture symbolizing the receptive
field of a motion sensitive neurons, typically V1. The motion direction of the contour is ambiguous
and the orthogonal direction is the one eliciting the highest response. Same response is perceived
for infinite motion directions and velocities, such as: (b) up-right motion, (c) down-right motion. A
bigger receptive field, as the one represented in orange corresponding, e.g., to the receptive field of a
MT neuron, will be able to integrate different motion cues: ambiguous 1D and unambiguous 2D. This
integration mechanism solves the aperture problem finding the real motion direction of the objects.

9.1.2 The aperture problem is a motion integration problem?

One of the most popular examples about motion integration of 1D and 2D motion
cues, is the barberpole illusion. The barberpole illusion is a visual illusion where a
drifting grating is seen through a rectangular aperture. The motion direction per-
ceived varies according to the relationship between the longer and shorter side (as-
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pect ratio). The perception of motion is biased in the direction of the longer axis, and
its deviation has been measured in psychophysics community by e.g., Wallach (1935);
Wuerger et al. (1996). Figure 9.2 shows two different barberpoles with aspect ratios
of 5:1 and 3:2.

Figure 9.2: Barberpole illusion represented by two different barberpoles stimuli: (a) barberpole with
aspect ratio 5:1 (b) barberpole with aspect ratio 3:2. The red arrows represent the orthogonal direction
of the drifting gratings.

This illusion can also be studied from a neurophysiology point of view. For exam-
ple, Pack et al. (2004) measured in monkeys the preferred directions of MT neurons
using barberpoles instead of classical drifting gratings. They reported that the pre-
ferred direction of MT neurons was biased towards the longest axis of the barberpole
and the strength of the shifting is related to its aspect ratio, which is consistent with
the perception measured by psychophysics experiments.

But, Pack et al. (2004) also showed that the preferred direction of MT neurons
evolves along time, having an early response in the orthogonal direction of the drift-
ing gratings inside the barberpole, and a late response biased the longer axis of the
barberpole. Evidence of microelectrode recordings in MT of alert monkey reveal that
during the first 80ms after the onset stimulus the response is strongly biased by 1D
motion, i.e., the direction defined by the orthogonal direction to the contours, but
lately the 2D motion direction is encoded. These experiments suggest that the aper-
ture problem is solved within the first 100ms of the onset stimulus Pack and Born
(2001). A diagram showing the evolution on time of the preferred direction of a MT
neuron is shown in Figure 9.3.

The mechanisms underlying the preferred direction deviation of a MT cell are
not at all defined. It looks like that the primate visual system initially considers
all the information available (ambiguous and unambiguous), and that along time, it
refines it in order to solve the aperture problem. This convergence in time can be
associated to different and complex neural networks which convey information com-
ing from other areas of the visual system as feedbacks (Berzhanskaya et al. (2007))
or horizontal connections. This phenomenon is also associated to the contribution
of terminators or end-points in different areas of the visual field such as V2 or V1
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Figure 9.3: Responses of one MT neuron to barberpole stimuli. (a) Preferred direction of MT neuron
measured using gratings drifting to different orientations (barberpole with aspect ratio 1:1). (b)-(c)
Response of the MT neuron for the first 40msec (early respose). The preferred direction follows the
orthogonal direction of contours and it is slightly affected by the elongation of the aperture. (d)-(e)
Response of the MT neuron for longer stimulus durations (200-1000ms after the stimulus onset) (late
responses). In this last case the preferred direction are completely affected by the elongation aperture,
showing a shifting towards the longer axis of the aperture (image taken from Pack et al. (2004)).

(Berzhanskaya et al. (2007); Bayerl and Neumann (2007); Pack et al. (2003)) which
should require slightly longer latencies.

Motivated by recent findings that 2D motion of terminators is faithfully encoded
by V1 neurons that exhibit strong surround suppression (Pack and Born (2001);
Sceniak et al. (2001); Jones et al. (2001)), we explore in this chapter the role of V1
surround suppression on the preferred direction shifting of MT cells.

9.2 IMPLEMENTATION OF V1 AND MT NEURONS

Starting from the definition done in Chapter 5, we present here specified models
for V1 and MT neurons.

9.2.1 V1 neuron implementation

V1 neurons are here modeled as a dynamic equation where their activation is given
by the value of their membrane potential uV 1(t). The membrane potential uV 1

i (t) of
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the ith V1 neuron is then defined by

duV 1
i (t)
dt

= −gLuV 1
i (t) + kinh

∑
j∈Φ

wijSr(uV 1
j (t− δt)) + Ii(t), (9.1)

where gL and kinh are the respective leak and inhibitory constants. wij defines the
inhibitory connection weights representing the strength of the synapse between the
ith V1 neuron and the jth V1 neuron. The delay of δt represents the delay associated
to horizontal connections. Sr(·) is a nonlinear function used to estimate the mean
firing rate of the jth V1 neuron from its membrane potential uV 1

j (t). As nonlinearity,
we use a normal rectification defined by

Sr(x) =

{
x if x > 0,

0 otherwise.
(9.2)

The external input current Ii(t) contains the motion information extracted from
the input stimulus, and it is defined by

Ii(t) = kexcCi(xi, t), (9.3)

where kexc is an excitatory amplification factor and Ci refers to the complex cell re-
sponse defined in equation (5.9).

9.2.2 MT neuron implementation

The goal of this chapter is to study the role of the V1 surround suppression in the
aperture problem solution. For this, MT neurons will be only considered as pooling
entities with a nonlinear function at the end.

The pooling mechanism for a MT neuron is the one described in Section 5.2. Con-
sidering as output activity of the ith MT neuron (AMT

i ) the value of its membrane
potential uMT

i (t), equation (5.14) can be here written as

uMT
i (t) = max

(
0,
∑
j∈Ωi

wijSr(uV 1
j (t))−

∑
j∈Ω′

i

wijSr(uV 1
j (t))

)
, (9.4)

where wij is the synapse weight between the jth V1 neuron and the ith MT neuron
specified in equation (5.13). Ωi and Ω′

i are the domains defined in equations (7.5) and
(7.6), respectively.

Sr(·) is the nonlinear function defined in equation (9.2) to estimate the mean firing
rate of the jth V1 neuron from its membrane potential value uV 1

j (t).
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Table 9.1: Values of the size of V1 receptive fields and V1 surrounds depending on their spatial
frequency.

Spatial frequency Receptive field size Surround size
cycles/pixel

0.04255 24 52.8
0.08510 12 26.4
0.17021 6 13.2

9.3 EXPERIMENTS

9.3.1 Implementation details

Input stimuli: We used stimuli of 200×200 pixels of: barberpoles, plaids type I,
plaids type II and unikinetic plaids (see Section 9.3.3).

V1 settings: V1 layer was formed considering a homogeneous density of 0.125
cells/pixel and a radius of 90 pixels. 16 spatial orientations were implemented, as well
as, 9 different spatiotemporal frequencies, giving as a results, spatiotemporal energy
filters tuned at: 2, 4, 8Hz and 0.05, 0.1, 0.2 cycles/pixel. We considered gL = 0.05,
kinh = 0.8 and kexc = 1.

The surround size is defined as 2.2 times the size of the V1 receptive field, which
is given by the spatial frequency of the motion energy filter associated (term Ii(t) in
equation (9.1). According to the spatial frequencies defined, the sizes of V1 receptive
field and V1 surround are listed in Table 9.1.

MT settings: MT layers were formed by a single cell placed at the center with a
receptive field covering all the input stimulus, i.e, with a radius of 100 pixels. We
used 16 layers of MT neurons, each of them tuned to a different motion direction.

9.3.2 Experimental protocol

The preferred direction of a MT neuron is measured calculating its mean firing rate
for input stimuli moving at different spatial directions. Considering the strength
of the response for each stimulus orientation, a polar graph is obtained showing the
preferred motion direction. This mechanism requires that the input stimulus must be
rotated as many times as many motion orientations want to be measured. In our case,
we could decide not to rotate the input stimulus but to create identical MT neurons
tuned to different motion orientations (in a drifting grating sense). This procedure is
equivalent to the stimulus rotation and the final preferred direction of the MT neuron
will be obtained combining the responses of the different MT neuron layers.

153



To better visualize the effect of the surround inhibition in the output of MT neu-
rons, the surround effect arised just after V1 membrane potential values are stabi-
lized. The neuron response was then divided into two stages: early response (without
V1 surround suppression) and late response (with V1 surround suppression). Figure
9.4 illustrates the early and late stages in the response of a V1 neuron.

Figure 9.4: Early (yellow) and late (gray) stages of a V1 neuron response. Early stage does not
consider V1 surround suppression, while in the late stage it does.

MT neuron response was also divided into two stages: early and late response. For
each of them, and for a MT neuron i, the mean activation was calculated averaging
in time the values of uMT

i (t), obtaining of this way, {uMT
i }early and {uMT

i }late.
The early and late mean responses of the 16 MT layers were normalized dividing

its activation by the sum of the mean activations of the totality of MT layers, in other
words,

{ũMT
i }early =

{uMT
i }early∑

k=0..15 {uMT
k }early

, (9.5)

{ũMT
i }late =

{uMT
i }late∑

k=0..15 {uMT
k }late

.

Finally, to estimate the mean firing rate of the ith MT neuron, the values of
{ũMT

i }early and {ũMT
i }late were passed through a sigmoid as the one defined in equa-

tion (7.1).

9.3.3 Results

In this section we studied motion integration dynamics of the stimuli presented in
Figure 9.5, namely barberpoles and different kind of plaids. The definition of a plaid
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type II will be given in the sequel.

Figure 9.5: Snapshots of different stimuli used to test the V1 surround suppression effect. The
respective velocity spaces are displayed at the top of each stimulus. Black arrows represents the motion
direction of drifting gratings for the plaid stimuli. Red arrows symbolize the motion perceived. (a)
Barberpole aspect ratio 5:1. (b) Barberpole aspect ratio 3:2 (1.5:1). (c) Plaid type I. (d) Plaid type II. (e)
Unikinetic plaid.

The barbepole illusion

We asked whether the MT neurons proposed in this chapter were able to reproduce
the preferred direction shifting reported by Pack et al. (2004). To do so, we tried our
architecture using two different barberpoles with two different aspect ratios: 5:1 and
3:2 (1.5:1). Gratings at the center had an spatial frequency of 0.1 cycles/pixel and a
temporal frequency of 4Hz. The drifting direction was 135◦ (see Figure 9.5).

In Figure 9.6, we observed the response of V1 neurons placed at different locations
and we focused on the evolution of their response for the early and late stages, which
means, before and after the V1 surround suppression. As it is possible to see in Figure
9.6, the response of V1 neurons are clearly affected by the surround suppression, they
are biased towards the largest border of the barberpoles.

Similarly, in Figure 9.7 we observed the response of the MT cells placed at the cen-
ter of the stimulus. We observed that the preferred direction, after the V1 surround
suppression, is clearly shifted towards the longer axis of the barberpole. This effect
is stronger for higher aspect ratios, i.e., the preferred direction shifting obtained for
the barberpole with aspect ratio 5:1 is bigger than the preferred direction shifting
obtained for the barberpole of aspect ratio of 3:2.

Plaids: type I, type II and unikinetic

We also tested the V1 surround suppression with other stimuli, such as plaids type
I, plaids type II and unikinetic plaids. Stimuli are shown in Figure 9.5 (c-e) and the
results are shown in Figure 9.8.
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Figure 9.6: Output of V1 neurons for the barberpole illusion. The barberpole has an aspect ratio of
5:1 and the grating drifts to 135◦. The figure shows the response of V1 cells located at three different
places: center (orange), vertical border (cyan) and horizontal border (green). The blue line represents
the output of V1 neurons for the early response. Red lines represent the output of V1 neurons for the
late response, which is clearly shifted to the largest border direction. In the case of the V1 cells placed
at the center, the late response does not exist because their activation are completely inhibited by the
surround suppression.

The plaid type I is formed by two gratings drifting to 135◦ and 225◦, respectively
(see Figure 9.5 (c)). Both gratings have identical spatial and temporal frequencies:
0.1 cycles/pixel and 4Hz. In plaid type I stimulus, the perceived direction, IOC and
VA coincides, and the surround suppression has no special effect in the MT preferred
direction, as it is shown in Figure 9.8 (a-c).

In the case of plaids type II, we tested a plaid formed by one grating drifting to
135◦, 6Hz and 0.1 cycles/pixel and a second grating drifting to 160◦, 3Hz and 0.1
cycles/pixels (see Figure 9.5 (d)). In this case, the VA solution significantly differs
from IOC solution, being this last one closer to the perceived direction. In this case
the surround inhibition did not showed special effect in the MT preferred direction
(see Figure 9.8 (d-f)).

For the unikinetic plaids, we used one static grating spatially oriented at 135 ◦and
a drifting grating drifting in the 90◦ direction with a temporal frequency of 3Hz (see
Figure 9.5 (e)). Both gratings have a spatial frequency of 0.1 cycles/pixel. The uniki-
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Figure 9.7: Output of MT neurons for the barberpole illusion. The polar graphs show the response
of the 16 MT neurons implemented. The first column shows a snapshot of the input stimulus. Second
column shows the polar graph for the early response (blue line). Third column shows the polar graph
for the late response (red line). (a) Barberpole with an aspect ratio of 5:1 drifting in 135◦direction. (b)
Barberpole with an aspect ratio of 3:2 drifting in 135◦direction. For the early and late stages, and for
each barberpole, the value of the MT preferred direction (in degrees) is displayed in the yellow box at
the bottom of each polar graph. The preferred direction shifting of MT neurons significantly changes for
the barberpole of aspect ratio 5:1 towards perception. The results obtained for the barberpole of aspect
ratio 3:2 show a slight preferred direction shifting.

netic plaids are treated in a different manner. How only one grating component drifts,
the IOC and VA mechanisms cannot be applied. In our simulations we perceive a
shifting in the MT preferred direction of around 10◦ towards the perceived direction
(see Figure 9.8 (g-i)).

The deviation observed in the preferred direction of MT neurons in our model
(about 10◦) is smaller than found by Pack et al. (2004) using barber-poles (about 25−
30◦ in about 150ms). This indicates that the weight given to 2D motion information
is still not sufficient to indicate the true global motion in our model
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Figure 9.8: Effect of V1 surround suppression in the preferred direction of a MT neuron. For each
stimulus and for the early and late stages, the value of the preferred direction of MT neurons (in degrees)
is displayed in the yellow boxes at the bottom of each polar graph. The effect is measured on three kinds
of plaids presented in the first column: (a) plaid type I, (d) plaid type II, (g) unikinetic plaid. The second
column shows the early response while the last column shows the late response. The shifting in the
preferred direction of MT cells is only clear on the unikinetic plaid.
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CHAPTER 10

CONCLUSION

“Great is the art of beginning, but greater is the art of ending”
– Henry Wadsworth Longfellow

10.1 SUMMARY

In this thesis we studied the motion perception in mammals and how bio-inspired
systems can be applied to real applications on real image sequences. Using properties
of directionally-selective neurons in V1 and MT macaque brain areas, we proposed
a feedforward V1-MT core architecture for motion processing. This architecture is
formed by two layers of motion sensitive neurons, V1 and MT layer. We proposed two
implementations for V1 and MT neurons: an analog and a spiking implementation.

10.1.1 Detecting motion

For both implementations, we defined energy motion detectors in order to ex-
tract the motion information from input image sequences. The energy motion de-
tectors were implemented following the physiologically plausible version proposed
by Adelson and Bergen (1985). This implementation shares properties with V1
directionally-selective neurons and is characterized by the fact that the tuning fre-
quencies cannot be found analytically. We also proposed a numerical analysis of the
frequency response of these filters, showing a table with the needed parameters to
create filters with suitable frequencies tuning.

10.1.2 V1-MT analog architecture

From the output of the energy motion detectors we proposed two implementations for
the analog V1 neurons.

• In Chapter 7 we considered directly the output of the motion detector units as
the membrane potential of V1 neurons, which after a nonlinearity, it can be
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interpreted as an estimation of its mean firing rate.

• In Chapter 9, a V1 neuron is implemented as a dynamical differential equation
where the value of its membrane potential evolves along time. In this case,
the output of motion energy filters is an external input current of the neuron,
which also has inhibitory neighboring connections with the neurons conforming
its suppressive surround. Similarly to the first implementation, the value of the
membrane potential is passed through a nonlinear function in order to estimate
the mean firing rate.

In both cases, the estimated mean firing rates of V1 neurons feed the next MT
analog layer. Each MT neuron conforming the MT layer, has a receptive field around
10 times bigger than the size of V1 receptive fields. We also implemented two types
of analog MT neurons, depending on the applications we considered:

• The role of different MT center-surround configurations: This goal was
assessed in Chapter 7, where we studied the effect of different center-surround
configurations in the performance human action recognition. MT neurons were
modeled as a conductance-based neurons where the value of their membrane
potential evolves along time according to input conductances. The value of the
input conductances depends on the mean firing rates of V1 neurons. Each MT
neuron has an input excitatory conductance which is obtained considering the
mean firing rates of V1 neurons inside its classical receptive field, and with an
absolute difference of angle between the preferred directions of V1 and MT neu-
rons less than π/4. Then, the inhibitory conductance was obtained considering
the V1 neurons whose receptive fields are centered at the inhibitory region of
MT neurons. Analogously to V1 neurons, the membrane potential value of MT
neuron was passed through a nonlinear function in order to estimate the value
of its mean firing rate.

• The role of V1 surround-suppression in the solution of the aperture
problem: This goal was assessed in Chapter 9, where we studied the role of V1
surround-suppression in the motion integration problem. V1 modeling was im-
portant as we previously described, and for MT we only implemented a pooling
entity followed by a normalization and a subsequent nonlinear function. The
pooling algorithm was the same described for the excitatory conductance of the
previous paragraph.

10.1.3 V1-MT spiking architecture

In the analog implementation we assumed that the mean firing rate was a sufficient
representation of the activation of V1 and MT neurons. But, real neurons communi-
cate through spikes, and spike trains contain much more information than just the
mean firing rate. For example, this was exemplified by the work of Thorpe et al. (see
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e.g., Thorpe et al. (2001); VanRullen and Thorpe (2002)) and Gollisch and Meister
(2008), who showed that before the mean firing rate is available, the visual system
already received important information about the input stimulus. Following this mo-
tivation, we proposed in Chapter 8 a fully spiking V1 and MT layers. In this spiking
implementation, V1 neurons are modeled as integrate-and-fire neurons where the
output of motion energy filters feed the V1 neurons as an external input current. The
output of this spiking V1 neurons, spike trains, are directly transmitted to the next
spiking MT layer. The subsequent spiking MT neurons are modeled as conductance-
driven integrate-and-fire neurons, where the spikes generated by afferent V1 neurons
form the excitatory input conductance. Similarly to the MT analog neurons, we also
implemented different inhibitory center-surround interactions. So, inhibitory conduc-
tance was formed by the spikes generated by V1 neurons falling into the inhibitory
MT surround area.

A major difference with the analog implementation of V1 and MT neurons, is that
no nonlinear function was added at the output of each neuron. This is mainly because
the spike generating process is already nonlinear and the mean firing rate can be
directly estimated counting the number of spikes emitted inside a time window.

10.1.4 Recognizing human actions

One of the goals to propose bio-inspired feedforward V1-MT models was to apply them
to a real application: human action recognition in real scenes.

To do so, from the output of our system, i.e., from the output of MT neurons, we
defined features vectors representing the input sequences, and with those feature
vectors we performed recognition.

With the analog V1-MT architecture, we proposed a mean motion map as a rep-
resentation of the motion information of the input stimulus. This mean motion map
is defined as a vector with a length equals to the total number of MT neuron. Each
position of the vector contains the estimated mean firing rate of each MT neuron in-
side a temporal window. Using these mean motion maps we also evaluated the effect
of different MT surround geometries in the human action recognition performance.

With the spiking V1-MT architecture, we proposed two different motion maps,
the two of them representing different characterizations of the spike trains: mean
motion map and synchrony motion map. Similarly to the mean motion map defined
for the analog V1-MT architecture, the mean motion map for the spiking architecture
is formed calculating the mean firing rate of each MT neuron inside a time window.
Then, the synchrony motion map does not code the mean firing rate, but the syn-
chrony between them. The synchrony motion map is an array of matrices where each
matrix represents the synchrony between neurons of the same MT layer. We had
many layers as many direction-selectivity and center-surround interactions defined.
The value of the synchrony is calculated using the ISI representation and the metric
defined by Kreuz et al. (2007).
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10.1.5 Solving the aperture problem

The other application treated in this thesis was the study of the effect of the V1
surround suppression in the solution of the aperture problem. In other words, how
the 2D information extracted by the V1 surround suppression mechanism can be
integrated by a MT neuron to solve the aperture problem.

The surround suppression, modeled by an isotropic difference of Gaussians (DoG),
acts like an end-stopping cell (Sceniak et al. (2001); Jones et al. (2001)) enhancing the
responses of the V1 cells located, e.g., at the border of a barberpole stimulus, and
inhibiting the activation of the V1 cells located at the center.

To do so, we tested different psychophysical stimuli such as barberpoles, plaid
type I, plaid type II and unikinetic plaid. With those stimuli, we observed the effect
of a delayed V1 surround suppression obtaining the MT preferred direction.

10.2 DISCUSSION

In this section, our goal is to make a critical analysis of the concepts and results
presented therein, but also to discuss the potential avenues of this work for future
research efforts.

10.2.1 V1-MT modeling

In V1 motion is processed by directionally-selective neurons, which can be found
in V1 simple and complex cells. The directionally-selective property is specially
enhanced in MT neurons, which also tend to have higher preferred speeds com-
pared to V1. In V1 complex cells is possible to find neurons exhibiting spatiotem-
poral response which does not depend on the spatial frequency of the input stimulus
(Priebe et al. (2006)). This type of neurons has been also found in MT (Priebe et al.
(2003); Perrone and Thiele (2001)). Neurons with this property, also known as speed-
tuned neurons have been the target of different V1-MT models proposed in the lit-
erature (see e.g., Grzywacz and Yuille (1990); Simoncelli and Heeger (1998); Perrone
(2004).

In our case we did not model speed-tuned neurons. Our V1 neurons, which are
based in the energy motion detectors proposed by Adelson and Bergen (1985), are
tuned for a certain speed but in a very limited spatiotemporal bandwidth. MT neu-
rons in our case do not pool V1 neurons in order to obtain a plane tuned for a cer-
tain speed, as done by Simoncelli and Heeger (1998) and Grzywacz and Yuille (1990),
who proposed different algorithms to find the same velocity plane. MT neurons pool
V1 neurons with the same motion direction selectivity, grouping of this way, the re-
sponses of all the spatiotemporal frequencies of the space. This simplified pooling
mechanism was basically inspired by the application of human action recognition,
where studies such as Casile and Giese (2005), have shown that our ability to recog-
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nize actions require a minimal speed information compared to motion direction and
a coarse spatial location of the motion information.

H

A natural extension of our work would be to consider the implementation of speed-
tuned neurons. This type of neurons will be necessary to have a system correctly
handling different phenomenons in V1 and MT neurons, such e.g., plaids type II and
pattern-component neurons.

V1 motion detection

For early local motion detection, Simoncelli and Heeger (1998) proposed local units
modeled through spatiotemporal energy filters. However, those filters have a tempo-
ral profile that is non-causal and inconsistent with V1 cell physiology. Our approach,
on the other hand, uses temporal profiles consistent with V1 cell physiology. These
biologically plausible temporal profiles bring out not trivial calculation for the tuning
of the spatial-temporal frequency orientation. As a consequence, motion orientation
tuning must be computed using numerical approximations.

MT pooling mechanism

In this thesis, we first presented MT neuron as a generic pooling entity which ren-
ders the output information of the V1 complex cells. We show that the pooling mech-
anism gives as result MT neurons with a high direction-selectivity, which is an im-
portant property present in real MT neurons (Albright (1984); Snowden et al. (1991);
Lagae et al. (1993); Churchland et al. (2005)), but we do not obtain speed-tuned neu-
rons, as we previously discussed. The dynamic activity of a MT neuron will depend
on the V1 neuron models implemented. For instance, in Chapter 9 MT neurons only
pools the mean firing rate of V1 neurons, in Chapter 8 MT neurons integrates the
spikes generated by V1 neurons, while in Chapter 7 MT neurons only integrate the
mean firing rate of V1 neurons which are analog values.

Center-surround interactions

The majority of V1 simple and complex cells have center-surround interactions, which
can be facilitatory or suppressive depending on the properties of the input stimulus,
i.e., contrast, spatiotemporal frequency, stimulus type (bars, random-dots, plaid, bar-
berpoles, etc.). Analogously, MT cells also exhibit center-surround interactions which
also depend on the input stimulus. Suppressive-surround mechanism is supposed
to be involved in the solution of the aperture problem modulating the preferred di-
rection of MT neurons. We presented different center-surround interactions in MT
neurons which were implemented in Chapters 7 and 8. We showed that this inter-
action, which is normally suppressive, codes important motion singularities that will
be crucial for motion categorization in a real vision application, as e.g. for the human
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action recognition application. We also implemented center-surround interaction in
V1 neurons (Chapter 9), showing that V1 surround suppression can extract 2D infor-
mation and contribute, of this way, with the solution of the aperture problem. We did
not try different V1 surround configurations.

Our model implements different MT non classical receptive fields by having dif-
ferent classes of center-surround interactions (e.g. Xiao et al. (1995), Born (2000)).
The role of different MT receptive field shapes in the action recognition task has not
been evaluated before. Here we present some results in the action recognition per-
formance using different structures and geometries of receptive fields as observed in
monkey area MT (Born (2000); Xiao et al. (1995, 1997b)), showing their crucial role
in our motion representation.

Feedbacks?

The quote at the beginning of Chapter 51 really inspired our work and it explains the
reason why no feedback mechanisms were included in this model.

H

Motion analysis can be performed without feedbacks, but of course, feedbacks
could give to our model additional capabilities and robustness. Considering feed-
backs2 was outside of the scope of this thesis, and this is also a natural perspective.
For instance, our model is not able to deal with crowding, or it has difficulties to treat
occlusions or complex backgrounds, tasks that can also been implemented using at-
tentional mechanisms. For the resolution of the aperture problem feedbacks also play
an important role, e.g., diffusing the non-ambiguous information seen by upper layers
to neurons in a lower layer to enhance the real motion direction of the objects and to
solve the aperture problem.

Towards a modelization of the visual system?

In this thesis, we focused on the modelization of a small piece of the visual system,
specially if we look back at the Felleman & Van Essen diagram of the visual system
shown in the introduction. So we can wonder, how this contribution could be extended
or included in a larger model of visual system?

H

For example, our system deals with motion analysis considering that input images
arrive directly to V1, where a first filtering stage is done. But this simplification lacks
a non neglected part of the visual system, which is all the way from the retina to V1.
So, the first idea that comes in mind would be to connect our system to the output of

1“We cannot think about what a feedback interaction could do if we do not first explore the limitations
of a feedforward model” – Simon Thorpe (GDR-vision meeting 2008)

2Note that the inclusion of feedback connections is not an original idea, since it has been already
implemented in several motion models processing (see Chapter 4). However, it could be interesting to
implement feedbacks in our model to investigate its different roles in motion processing and integration.
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a retina model (see e.g., Hérault and Durette (2007); Wohrer and Kornprobst (2009)).
But then, what will be the gain with this new architecture? Maybe, a simplified retina
performing operations, such as edge detection and contrast-gain normalization, would
be sufficient.

But more generally, a challenging perspective is to consider our contribution as
a part of a global model of the visual system. The integration of different elements
of the visual system requires non-trivial efforts to understand and to implement the
connectivity between different layers. A big effort in this direction has been done by
the BlueBrainProject3, who attempts to model neocortical columns that can be used to
simulate any brain area.

To deal with this long term perspective, many questions will require some atten-
tion: What kind of mathematical framework is the most suitable? How to deal with
the fusion of different scales? What are the computational challenges for the imple-
mentation?

10.2.2 Human action recognition: result analysis

Analogue or spike architecture?

With the analogue architecture, we showed that the inclusion of different center-
surround interactions in MT neurons can significantly improve the recognition per-
formances. We think that different center-surround interactions in MT neurons ex-
tract singular motion patters that act like key information for motion categorization
task.

With the spiking architecture, recognition results obtained using synchrony mo-
tion maps are slightly inferior than the ones obtained using mean motion maps, spe-
cially if we only consider the activation of MT CRFs. This difference is enhanced
in the robustness experiments. As an explanation, we think that because the syn-
chrony analysis largely forgets about the rate, it lacks a fundamental information
about network activity. Nevertheless, by considering synchronies only, satisfying
recognition performance can be achieved. Also, note that the use of the synchrony to
encode the input motion information improves the inter-class separability obtaining
a better class clustering (see Figure 8.9 and Table 8.3). These results are consistent
with neuroscience findings about the complementarity of rate and synchrony codes:
There are evidence from motor and visual cortex that both, rate and synchrony code,
are conjointly used to extract complementary information, (Maldonado et al. (2008);
Grammont and Riehle (2003); Riehle et al. (1997)). As a future work, we plan to com-
bine these two motion maps in order to have a better representation of the input
motion information.

Although the mean motion maps of the analogue and spiking architecture have
the same philosophy of construction, there are differences in the recognition error

3http://bluebrain.epfl.ch
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rates obtained for both architectures. We think that this difference is due mainly be-
cause the parameters of the model are not the same and the spike generation mech-
anisms in both representations are not equivalent.

In general, the results obtained with the spiking architecture are not so good as
the ones obtained with the analog architecture. This does not mean that the use of
spikes does not bring anything new, it means that either we are not interpreting the
neural code in a proper manner or the motion maps proposed as representations of
the input motion information are not really representatives.

H

Regarding to spiking architecture, the main perspective will be the study of higher
order statistics of the spike trains generated by MT neurons. It is likely that this
study will give us new insights about how to analyze the MT output, i.e., the motion
content in videos.

More validations?

Of course, more validation would be needed! We tested the model with Weizmann
database. The good recognition performance obtained with our model, both with ana-
log and spiking architectures, reinforces our hypothesis about the representation of
our motion maps.

Weizmann database was also used by, e.g., Blank et al. (2005) and Jhuang et al.
(2007) to validate their model. However, test conditions and experimental protocol
are not the same than the ones considered in our experiments, and therefore recogni-
tion performances cannot be easily compared.

Based on our results, we do not claim that our system will work in any condition.
But that concern is in fact general as remarked by Pinto et al. (2008): It is an over-
claim to declare that the whole action recognition problem is solved only based on
some results obtained with a given database, real conditions as complex background,
rotations, occlusions, distractors are generally not included. So, more validation with
other databases, such as KTH4 database, would be needed.

H

Beside doing more validations, we also think about two additional perspectives.
The first perspective is to investigate how local form information can be dynami-
cally merged and integrated with the motion pathway to improve the representation
of motion maps, specially in the case of complex backgrounds where motion integra-
tion could play an important role. The second perspective is to investigate the role
of classifiers in the results. The representation of our motion maps clearly affects
the recognition performance. But, the classifier should be also a critical element in
the system. As a perspective, it could be interesting to make a benchmark of different
classifiers in order to evaluate their impact in the recognition performance.

4http://www.nada.kth.se/cvap/actions/
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Also, we thought about additional experiments that could be done. For example,
we wonder about the existence of keyframes. It has been shown that not all the
frames of an action have the same relevance for recognition. If only a few keyframes
are shown, we can successfully recognize actions. It could be interesting to imple-
ment, according to the "complexity" of motion information of each frame, an auto-
matic extraction of keyframes in order to only compare the most relevant motion in-
formation of each sequence. Another set of experiments is the early recognition.
Following the spirit of ultra fast classification based mainly in Thorpe et al. (2001)
and Thorpe and Fabre-Thorpe (2001), we could study the evolution of the recognition
performance along time. In other words, how much time is needed to have successful
recognition performance (the size of the temporal window, ∆t, in the construction of
motion maps)?. This study could be seen as an application of rank-order-coding for
videos. Changing the value of ∆t could be also interpreted as the "memory" of the sys-
tem, i.e., how much information from the past is needed to have a good representation
of a certain action?

How to compare our model with existing models?

Earlier models have suggested that biological motion perception depends on strong
interactions between motion and form pathways (see Blake and Shiffrar (2007) for
a review). In the model proposed by Giese and Poggio (2003), both form and mo-
tion pathways learn sequences or "snapshots" of human shapes and optic flow pat-
terns, respectively. Several models have been proposed to dynamically constrain
such motion model using local information about shapes, features and contours (e.g.,
Bayerl and Neumann (2007); Tlapale et al. (2008)). Since configural information are
important for biological motion recognition (e.g., Hiris et al. (2005)).

Specifically, Giese and Poggio (2003) proposed a neurophysiological model for the
visual information processing in the dorsal (motion) and ventral (form) pathways.
The model is validated in the action recognition task using as input stimulus stick
figures constructed from real sequences. Assuming no interaction between the two
pathways, they found that both motion and form pathways are capable to perform
action recognition. Moreover, their model exhibit several interesting properties for
biological pattern motion recognition such as spatial and temporal scale invariance,
robustness to noise added to point-light motion stimuli and so on. One of the main
difference with our approach is the fact that new parameters need to be fitted if a new
action must be considered. In our case, no parameters must be adjusted and only the
new motion maps must be inserted into the training set.

More recent work from Jhuang et al. (2007) implemented this invariance for
spatial and temporal scales (i.e. stimulus size and execution time, respectively).
Their approach uses a bio-inspired model for the action recognition task based in
Giese and Poggio (2003) and Serre et al. (2005). The invariance to spatial and tem-
poral scale is achieved considering as many motion detector layers as the number of
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spatial and temporal scales to be detected followed by a max operator. This can be
easily implemented in our approach adding more layers with different spatial and
temporal scales and therefore apply the max operator between the different layers
coding the same motion direction.

Unlike optical-flow based models, where a single velocity is assigned to each point,
our model reproduces to some extent the richness of center-surround interactions
specifically varying the geometries of the surrounds (see Figure 5.14) (Born (2000);
Xiao et al. (1995, 1997b)). The different surround geometries give different kinds of
motion contrasts for several orientations at every point. Interestingly, we showed
that taking into account this diversity of MT cells improves the recognition perfor-
mance. Our interpretation is that cells with inhibitory surrounds bring information
related to velocity opponency or singularities in the velocity field of the input stimu-
lus.

Contrarily to the bio-inspired model of Giese and Poggio (2003), our model re-
lies on a general purpose motion processing based upon the known properties of the
two-stages biological motion pathway where V1 and MT neurons implement detec-
tion and integration stage, respectively. The architecture is rooted on the linear-
nonlinear ("L-N") model, of a kind that is increasingly used in sensory neuroscience
(see Simoncelli and Heeger (1998), Rust et al. (2006) for instance). Recent version of
this L-N models propose that complex motion analysis can be done through a cas-
cade of L-N steps, followed by a Poisson spiking generation process Rust et al. (2006).
Our generic motion model departs from this cascaded L-N model in several important
way.

Regarding quantitative comparison, we followed the experimental protocol pre-
sented by Jhuang et al. (2007) in order to compare the results obtained. For our
both architectures, the results obtained using mean motion maps and synchrony mo-
tion maps revealed a high variability depending on the sequences taken to build the
training set. Due to the high variability found in our results, the direct comparison
with Jhuang et al. (2007) is not evident.and their recognition percentages no repre-
sentatives.

10.2.3 V1 surround suppression: result analysis

As we previously stated in Chapter 9, we obtained smaller shifting in the preferred
directions of MT neurons than the ones reported by Pack et al. (2004), so we need
additional mechanisms to really solve the aperture problem. To reach a satisfying
solution of the aperture problem, several solutions will be explored

• Changes in preferred direction in MT neurons depend on several parameters
of the non-linear stage at the end of V1 processing. This is consistent with
the finding of Rust et al. (2006) that pattern-selectivity in MT neurons depends
critically on the nonlinear processing (i.e., divisive normalization) at both V1
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and MT level. Nonlinearities seem to play a fundamental role which needs to
be clarified.

• Different types of center-surround interactions working at different spatial
scales and with different relative orientations might be an alternative to ex-
tract 2D features motion.

• A better diffusion process of 2D information can be achieved through anisotropic
interactions between different locations (see, e.g., Tlapale et al. (2008)).

• The 2D motion information extracted by the V1 surround suppression mecha-
nism. In the case of plaids type II or unikinetic plaids, the motion perceived
could be associated to a motion of a pattern that has a lower frequency com-
pared to the drifting gratings used to create the stimuli (see Wilson et al. (1992)
and Non-Fourier motion). The spatiotemporal frequency tuning of V1 neurons
used to extract the 2D information is crucial to detect this pattern, and to have
of this way a high response to the 2D motion cues.

We also explored the effect of V1 surround suppression in different stimuli such as
plaids type I, plaids type II and unikinetic plaids. In the only plaid where a shifting in
the preferred direction of MT neuron was perceived is for the unikinetic plaid, where
a shifting of around 10◦ was obtained. We expected also to have a shifting for plaids
type II, but we observed in our experiments that the V1 surround suppression did not
affect the preferred direction of the MT neuron. We believe that this effect is related
to the right spatiotemporal frequency that must be “seen” by our V1 motion detec-
tors, where the spatiotemporal frequency tuning of V1 neurons becomes essential to
correctly extract the 2D motion information.

H

The model for V1 neuron defined in Chapter 9 can be formalized as neural
fields where several theoretical and experimental results are established (see, e.g.,
Faugeras et al. (2009); Giese (1998)). Indeed, equation (9.1) is equivalent to the voltage
based model framework, where the population of neurons in our case is only the com-
bination of four simple cells (see equation (5.9)). Neural field implementation requires
a deeper mathematical analysis for dynamical systems, such as stationary solutions,
stability, bifurcation diagrams, etc. For example, it would be very interesting to study
how the stability of the system, or the number of solutions (multistability) varies, e.g.,
with different center-surround configurations.

10.2.4 Software contribution

A substantial effort was done to implement code dealing with networks of neurons,
spiking neurons, parallel processing, motion-energy filtering, etc.

In particular, an effort was made to implement properly the spatiotemporal filter-
ing needed for the motion energy computation, specially because this stage represents
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the most demanding calculation. This part of the work will be available soon as an
open source C/C++ library.

The spiking neuron implementation was done thanks to the MVAspike library de-
veloped by Rochel (2004). Which allowed us to easily create layers of spiking neurons
and connections between them.
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CHAPTER 11

CONCLUSION (FRANÇAIS)

“Great is the art of beginning, but greater is the art of ending”
– Henry Wadsworth Longfellow

11.1 RÉSUMÉ

Dans cette thèse nous avons étudié la perception du mouvement chez le mam-
mifère. Nous montrons aussi comment un système bio-inspiré peut être utilisée dans
le cadre d’une application qui travaille avec des séquences d’images réelles. À partir
des propriétés de selectivité à l’orientation des neurones de V1 et MT, nous avons
proposé une architecture sequentielle générale, modélisant les aires corticales V1 et
MT qui a comme obtectif le traitement du mouvement. Cette architecture est formée
par deux couches de neurones sensibles à la direction du mouvement: la couche V1 et
la couche MT. Nous avons proposé deux implémentations des neurones de V1 et MT:
analogique et évènementielle.

11.1.1 Detection du mouvement

Pour ces deux implémentations, nous avons défini des détecteurs de mouvement
basés sur l’energie pour obtenir l’information du mouvement à partir de la séquence
d’images d’entrée. Les détecteurs de mouvement basés sur l’énergie ont été im-
plementés en se basant sur la version physiologique de Adelson and Bergen (1985).
Cette implémentation a des propriétés en commun avec les neurones de V1 sensibles
à la direction, et est characterisée par le fait que le réglage des fréquences spatio-
temporelles ne peut pas être fait de façon analytique. Nous avons aussi proposé une
analyse numérique pour trouver la réponse en fréquence de ces filtres: Nous don-
nons un tableau avec les paramètres requis pour créer des filtres avec une sélectivité
souhaitée.
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11.1.2 L’architecture analogique de V1 et MT

À partir de la sortie des détecteurs de mouvement basés sur l’énergie, nous avons
proposé deux implémentations pour les neurones de V1:

• Dans le Chapitre 7, nous avons directement pris la sortie des détecteurs de mou-
vement à savoir le voltage de membrane d’un neurone de V1 lequel, après une
non-linéarité, peut être interprété comme une estimation du taux de décharge
moyen.

• Dans le Chapitre 9, chaque neurone de V1 est implementé par une équation
différentielle dynamique, où la valeur du potentiel de membrane évolue au cours
de temps. Dans ce cas, le courant externe du neurone est la sortie des filtres de
mouvement. Le neurone a aussi des connexions latérales inhibitrices dans un
voisinage. De la même façon que l’implémentation du Chapitre 7, la valeur du
potentiel de membrane est passée au travers d’une fonction non-linéaire pour
obtenir une estimation du taux de décharge moyen.

Dans ces deux cas, l’estimation du taux de décharge moyen des neurones de V1
est l’entrée de la couche analogique suivante, MT. Chaque neurone de MT conformant
sa couche, a un champ récepteur d’une taille d’environ 10 fois le rayon des champs
récepteurs des neurones de V1. Nous avons aussi implémenté deux types de neurones
analogiques pour MT, en fonction de l’application considerée:

• Le rôle des différentes configurations de centre-périphérie pour les
neurones de MT: Cet objectif est abordé dans le Chapitre 7, où nous avons
étudié l’effet de différentes configurations de centre-périphérie sur les perfor-
mance de reconnaissance d’action. Les neurones de MT ont été modélisés
comme des neurones à conductance, où la valeur du potentiel de membrane
évolue au cours du temps selon ses conductances d’entrée. Les valeurs des con-
ductances d’entrée dépendent du taux de décharge moyen des neurons de V1.
Chaque neurone de MT a comme conductance d’entrée excitatrice les estima-
tions des taux de décharge moyens pour les neurones de V1 dans son champ ré-
cepteur classique, et avec une différence absolue de l’angle entre les directions
préférées des neurones de V1 et MT inférieur à π/4. Par contre, la conductance
inhibitrice est obtenue à partir des neurones de V1 localisés dans la région in-
hibitrice du champ récepteur du neurone de MT. De la même manière que les
neurones de V1, la valeur du potentiel de membrane d’un neurone de MT est
passée par une fonction non-linéaire afin d’obtenir une estimation du taux de
décharge moyen.

• Le rôle de la suppression périphérique des neurones de V1 pour ré-
soudre le problème d’ouverture: Cet objectif est abordé dans le Chapitre
9, où nous avons étudié le rôle de la suppression périphérique des neurones
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de V1 sur le problème d’intégration du mouvement. La modélisation de V1 a
déjà été décrite, et pour MT nous avons simplement implémenté des entités de
groupage, suivi par une normalisation et une fonction nonlinéaire. L’algorithme
de groupage a été déjà décrit dans le paragraphe précédent.

11.1.3 L’architecture évènementielle de V1 et MT

Dans l’implémentation analogique nous avons supposé que l’activation des neurones
de V1 et MT peut être réprésentée par le taux de décharge moyen. Mais, dans la
réalité les neurones se communiquent par spikes, et les trains de spikes contiennent
plus d’information que le taux de décharge moyen. Cette idée a par example été
illustrée par Thorpe et al. (voir Thorpe et al. (2001); VanRullen and Thorpe (2002))
et Gollisch and Meister (2008), qui ont montré qu’avant que le taux de décharge ne
soit disponible, le système visuel a déjà reçu des informations importantes sur le
stimulus d’entrée. Motivés par ce fait, nous avons proposé dans le Chapitre 8 des
couches de V1 et MT évènementielles.

Dans cette implémentation évènementielle, les neurones de V1 sont modélisés
comme des neurones intègre-et-tire, où la sortie des filtres de mouvement alimente
ces neurone comme un courant externe. La sortie évènementielle des neurones de
V1, c’est-à-dire le train de spikes, est transmise directement à la couche suivante de
MT. Les neurones de MT sont modélisés comme neurones à conductance intègre-et-
tire, où les spikes générés par les neurones de V1 précédents forment la conductance
d’entrée excitatrice. D’une façon similaire aux neurones de MT, nous avons aussi
implémenté différentes interactions centre-périphérique à caractère inhibiteur. La
conductance d’entrée inhibitrice est formée par les spikes générés pour les neurones
de V1 localisés dans la région inhibitrice du champ récepteur du neurone de MT.

La principale différence avec l’implémentation analogique des neurones de V1 et
MT, est le fait qu’aucune fonction non-linéaire n’a été ajoutée à la sortie de chaque
neurone. C’est principalement parce que le processus de production des spikes est
déjà non-linéaire que le taux de décharge moyen peut être directement estimé à partir
du nombre de spikes émis dans une fenêtre de temps.

11.1.4 La reconnaissance d’actions

L’introduction des modèles sequentiels bio-inspirés pour V1 et MT était motivée par
les applications en reconnaissance d’actions pour les scènes réelles.

Pour ce faire, nous avons défini des vecteurs caractéristiques feature vectors
représentant les séquences d’entrée à partir de la sortie de notre système, c’est à
dire, à partir de la sortie des neurones de MT. Ces vecteurs sont utilisés pour la re-
connaissance.

En se basant sur l’architecture analogique de V1 et MT, nous avons proposé
une carte de mouvement moyen mean motion map comme une représentation de
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l’information du mouvement contenu dans le stimulus d’entrée. Ce mean motion map
se définit comme un vecteur d’une longeur égale au nombre total de neurones de MT.
Chaque indice du vecteur contient le taux de décharge moyen estimé de chaque neu-
rone de MT à l’intérieur d’une fenêtre temporelle. Avec ces mean motion maps, nous
avons aussi évalué l’effet de différentes géometries de champs récepteurs de neurone
de MT sur cette application de reconnaissance d’actions.

En se basant sur l’architecture évènementielle de V1 et MT, nous avons proposé
deux cartes de vitesses motion maps différentes, chacune représentant différentes
caractérisations des trains de spikes: la carte de mouvement moyen mean motion
map et la carte de mouvement de synchronie synchrony motion map. D’une manière
similaire au mean motion map défini pour l’architecture analogique de V1 et MT,
la mean motion map de l’architecture évènementielle est formé à partir du calcul
du taux moyen de décharge de chaque neurone de MT dans une fenêtre temporelle.
La synchrony motion map ne code pas le taux moyen de décharge des neurones de
MT, mais leur synchronie. Cette carte se représente avec un tableau de matrices où
chaque matrice code la synchronie entre deux neurones de MT de la même couche.
Nous avons implementé autant de couches que le nombre des interactions centre-
périphérie et direction-selectivity. La valeur de la synchronie est calculée en utilisant
la représentation ISI et la métrique définie par Kreuz et al. (2007).

11.1.5 Le problème d’ouverture

La deuxième application traitée dans le cadre de cette thèse, est l’étude de l’effet
de la suppression périphérique des cellules de V1 dans le problème d’ouverture.
En d’autres termes, comment l’information 2D provenant de la suppression pé-
riphérique de V1 peut être intégrée par un neurone de MT pour résoudre le problème
d’ouverture?

La suppression périphérique, modélisée par une différence de Gaussiennes
isotropes (DoG), agit comme une cellule de type end-stopping (Sceniak et al. (2001);
Jones et al. (2001)). Les cellules end-stopping ressortent les réponses des neurones
de V1 placés, par exemple, sur les bords d’un stimulus de type barberpole, et inhibent
l’activation des cellules de V1 placées au centre.

Pour ce faire, nous avons testé différents stimuli psychophysiques comme les bar-
berpoles, les plaids type I, les plaids type II et les plaids unicinétiques. Grâce à ces
stimuli, nous avons observé l’effet d’une suppression périphérique de V1 retardée
dans la direction préférée d’un neurone de MT.

11.2 DISCUSSION

Dans cette section, notre objectif est de faire une analyse critique des concepts et
des résultats présentés dans cette thèse, mais aussi de discuter des prologements de
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ce travail pour les recherches futures.

11.2.1 Modélisation de V1 et MT

Dans V1, la détection du mouvement est faite par des neurones sélectifs à la di-
rection, qui peuvent être trouvés dans les cellules simples et complexes de V1. La
propriété de sélectivité à la direction est spécialement renforcée dans les neurones
de MT, qui ont également tendance à avoir une vitesse privilégiée par rapport aux
cellules de V1. Parmi les cellules de V1 complexes il est possible de trouver des
neurones avec des réponses spatio-temporelles indépendantes de la fréquence spa-
tiale du stimulus d’entrée (Priebe et al. (2006)). Ce type de neurones a été égale-
ment trouvé dans MT (Priebe et al. (2003); Perrone and Thiele (2001)). Ces neurones,
également connus comme neurones speed-tuned, ont été la cible de différents modèles
de V1 et MT proposés dans la littérature (par example, Grzywacz and Yuille (1990);
Simoncelli and Heeger (1998); Perrone (2004)).

Dans notre cas, nous n’avons pas modélisé les neurones de type speed-tuned.
Nos neurones de V1, qui sont basés sur les détecteurs de mouvement proposés par
Adelson and Bergen (1985), sont réglés pour une certaine vitesse mais dans une
bande spatio-temporelle très limitée. Dans notre cas, les neurones de MT n’utilisent
pas les neurones de V1 pour obtenir un plan réglé pour une vitesse donnée, comme
l’on fait Simoncelli and Heeger (1998) et Grzywacz and Yuille (1990). Nos neurones
de MT groupent les neurones de V1 de la même direction de mouvement préferé,
afin d’obtenir une réponse sensible à une direction donnée pour toutes les fréquences
spatiotemporelles de l’espace. Ce mécanisme de groupement simplifié a été inspiré
pour l’application de la reconnaissance d’actions, où des études comme celles de
Casile and Giese (2005), ont montré que notre capacité de reconnaissance nécessite
peu d’information sur la vitesse et sur la localisation spatialle du mouvement en com-
paraison à la direction du mouvement.

H

Une extension naturelle de notre travail est de considérer l’implementation des neu-
rones de type speed-tuned. Ce type de neurones est nécessaire pour l’implémentation
d’un système qui manipule d’une manière plus appropriée certains phénomènes ob-
servés dans V1 et MT, par exemple, les plaids type II et les neurones de type pattern-
component.

Détection de mouvement dans V1

Pour la détection rapide de mouvement local, Simoncelli and Heeger (1998) ont pro-
posé des entités locales modélisées comme des filtres d’énergie spatio-temporels.
Toutefois, ces filtres ont un profil temporel qui n’est pas causal ce qui est contra-
dictroire avec la physiologie des neurones de V1. Notre approche, d’autre part, im-
plémente des profils temporels en accord avec la physiologie des neurones de V1.
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Ces profils spatio-temporels biologiquement inspirés nécessitents des calculs diffi-
ciles pour le réglage de l’orientation spatiotemporelle dans l’espace des fréquences.
En conséquence, le réglage de l’orientation du mouvement doit être calculé par ap-
proximation numérique.

Mécanisme de groupement de MT

Dans cette thèse, nous avons d’abord présenté un neurone de MT comme une en-
tité qui groupe les sorties des cellules complexes de V1. Nous montrons que cette
procedure de groupage donne comme résultat des neurones de MT avec une haute
sélectivité à la direction, propriété très importante dans les neurones de MT réels
(Albright (1984); Snowden et al. (1991); Lagae et al. (1993); Churchland et al. (2005)),
mais comme nous avons déjà discuté, nous n’obtenons pas des neurones réglés pour
une certaine vitesse. L’activité dynamique des neurones de MT dépend du modèle
implémenté pour les neurones de V1. Par exemple, dans le Chapitre 9 les neurones
de MT groupent seulement les taux de décharge moyens des neurones de V1. Dans
le Chapitre 8, par contre, les neurones de MT intègrent les spikes générés par les
neurones de V1, tant que dans le Chapitre 7, les neurones de MT intègrent les taux
de décharge moyens des neurones de V1 qui sont à valeurs analogiques.

Interactions centre-périphérique

La plus grande partie des cellules simples et complexes de V1 ont des interactions
centre-périphérie, qui peuvent être intégratives ou suppressives selon les propriétés
du stimulus d’entrée, par exemple, le contraste, la fréquence spatio-temporelle, le
type de stimulus (des bars, des points aléatoires, des plaids, etc). D’une manière
similaire, les cellules de MT ont montré aussi des interactions centre-périphérique
dépendant aussi du stimulus d’entrée. On pense que le mécanisme de la suppression
périphérique est impliqué dans la solution du problème de l’ouverture modulant la
direction préferée des neurones de MT.

Nous avons présenté différentes interactions centre-périphérique pour les neu-
rones de MT qui sont implémentées dans les Chapitres 7 et 8. Nous avons montré
que cette interaction, qui est le plus souvent suppressive, code des singularités im-
portantes de l’information du mouvement qui seront cruciales pour des applications
réelles, comme la reconnaissance d’actions. Nous avons implémenté aussi des inter-
actions centre-périphérique pour les neurones de V1 (Chapitre 9) en montrant que la
suppression périphérique des cellules de V1 peut faire sortir l’information de mou-
vement 2D et contribuer à la solution du problème de l’ouverture. Nous n’avons pas
essayé différentes configurations de périphérie pour les neurones de V1.

Notre modèle implémente différents champs récepteurs de cellules de MT non-
classiques, avec différentes interactions centre-périphérique (par exemple, Xiao et al.
(1995), Born (2000)). Le rôle de ces différentes formes de champs récepteurs de neu-
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rones de MT dans la reconnaissance d’actions n’avait pas été encore évalué. Dans le
cadre de cette thèse nous montrons des résultats pour la performance de la reconnais-
sance d’actions en utilisant différentes structures et géometries des champ récepteurs
comme ceux observés dans l’aire MT chez le macaque (Born (2000); Xiao et al. (1995,
1997b)), et en montrant leur rôle important pour la répresentation du mouvement.

Feedbacks?

La citation au début du Chapitre 51 a vraiment inspiré notre travail et elle explique
aussi pourquoi nous n’avons pas implémenté des feedbacks dans notre modèle.

H

L’analyse du mouvement peut être réalisée sans l’implémentation de feedbacks,
mais bien sûr, les feedbacks peuvent ajouter à notre modèle des capacités additionelles
et de la robustesse. L’implémentation des feedbacks2 serait donc une perspective na-
turelle. Par exemple, notre modèle n’est pas capable de traiter la foule, ou il aura des
problèmes pour traiter les occlusions ou arrière-plans complexes, tâches qui ont été
aussi implémentées au travers des mécanismes de l’attention. Pour le cas précis de la
résolution du problème d’ouverture, les feedbacks jouent aussi un rôle important, par
exemple, en diffusant l’information non-ambiguë obtenue par les couches supérieures
sur les neurones des couches inférieures pour faire sortir la direction réelle du mouve-
ment des objets et ainsi résoudre le problème d’ouverture.

Vers la modèlisation du système visuel?

Dans le cadre de cette thèse, nous nous sommes concentrés sur une petite partie du
système visuel (voir le schéma de Felleman & Van Essen montré dans l’introduction).
Nous imaginons ce travail comme une contribution à une modèlisation plus large du
système visuel.

H

Par exemple, notre modèle s’occupe de l’analyse du mouvement en considérant que
les images d’entrée arrivent directement sur V1, où une première étape de filtrage est
exécutée. Mais cette simplification manque une partie du système visuel importante à
savoir, tout le chemin entre la rétine et V1. Donc, la première idée qui vient à l’esprit
est de connecter notre système à la sortie d’un modèle de rétine (comme ceux proposés,
par example, par Hérault and Durette (2007); Wohrer and Kornprobst (2009)). Quel
serait le gain de cette nouvelle architecture? Peut-être un modèle simplifié de rétine

1“We cannot think about what a feedback interaction could do if we do not first explore the limitations
of a feedforward model” – Simon Thorpe (GDR-vision meeting 2008)

2Nous faisons la remarque que l’implémentation des connections de type feedbacks sont déjà im-
plémentés dans plusieurs modèles de traitement du mouvement (voir le Chapitre 4). Cependant, leur
implémentation dans notre modèle pourrait être intéressante pour étudier leur rôles dans le traitement
et l’intégration du mouvement.
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exécutant certaines opérations comme la détection de bords et la normalisation du
contraste, pourrait être suffisants?

D’une façon plus générale, une perspective ambitieuse est de considérer notre con-
tribution comme une partie d’un modèle du système visuel global. L’intégration de
différents élements du système visuel requièrent de gros efforts pour comprendre et
implémenter la connectivité entre les différentes aires et couches. Un gros effort dans
cette direction est mené dans le BlueBrainProject3, qui s’interesse à la modélisation
des colonnes souscorticales pour les utiliser dans la simulation des aires du cerveau.

Pour affronter cette perspective à long terme, plusieurs questions difficiles devront
être considerées: Quel type de cadre mathématique serait le plus appropié? Comment
pourrions nous traiter la fusion des différentes échelles? Quels sont les challenges
computationnels pour l’implémentation?

11.2.2 Reconnaissance d’actions: l’analyse des résultats

Une architecture analogique ou évènementielle?

Avec l’architecture analogique, nous avons montré que l’inclusion de différentes in-
teractions centre-périphérie des neurones de MT peut améliorer significativement
les performance de la reconnaissance. Nous pensons que les différentes interactions
centre-périphérie des neurones de MT extraient des échantillons singuliers de mouve-
ment qui se comportent comme de l’information clé pour une tâche de catégorisation
du mouvement.

Avec l’achitecture évènementielle, les résultats de la reconnaissance obtenus à
travers des synchrony motion maps sont légèrement inférieurs à ceux obtenus avec
des mean motion maps, particulièrement si nous considérons seulement l’activation
du champ récepteur classique des neurones de MT. Cette différence est mise en valeur
dans les expériences de robustesse. Comme une possible explication, nous croyons
que l’analyse de la synchronie oublie largement le taux moyen de décharge, qui rép-
resente information fondamentale de l’activation du réseau. Néanmoins, avec seule-
ment l’information obtenue par l’analyse de la synchronie, la performance de la re-
connaissance peut être satisfaisante. Également, remarquons que l’analyse de la syn-
chronie pour coder l’information du mouvement améliore la séparabilité entre-classes
obtenant de cette manière un meilleur partitionement clustering (voir la Figure 8.9
et Tableau 8.3). Ces résultats sont en accord avec des mesures réelle par rapport
à l’information complémentaire du codage par le taux moyen de décharge ou par la
synchronie: Il y a des preuves que le système moteur et le cortex cérébral visuel
utilisent tous les deux le taux moyen de décharge et la synchronie comme une anal-
yse conjointe pour extraire l’information complémentaire (Maldonado et al. (2008);
Grammont and Riehle (2003); Riehle et al. (1997)). Comme perspective nous pensons

3http://bluebrain.epfl.ch
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combiner les deux cartes de mouvement proposées dans cette thèse pour réusir une
meilleure répresentation de l’information du mouvement d’entrée.

Bien que les mean motion maps des architectures analogiques et évènementielles
aient la même philosophie de construction, il y a des différences dans les taux de
reconnaissance obtenus pour chaque architecture. Nous croyons que cette différence
est due au fait que les paramètres du modèle ne sont pas les mêmes et que les mécan-
ismes de production des spikes pour les deux architectures ne sont pas équivalents.

D’une une manière générale, les résultats obtenus avec l’architecture évènemen-
tielle ne sont pas aussi satisfaisants que ceux obtenus avec l’architecture analogique.
Cela ne signifie pas que l’utilisation des spikes n’ouvre pas de nouvelles perspec-
tives, mais cela veut plutôt dire que notre interpretation actuelle du codage neuronal
n’est sans doute pas appropriée ou que nos cartes de vitesses motion maps proposées
comme réprésentations de l’information du mouvement d’entrée doivent être consid-
erées comme une répresentation imparfaite des données.

H

À propos de l’architecture évènementielle, notre principale perspective est l’étude
des statistiques d’ordre supérieur pour l’analyse des trains des spikes générés
par les neurones de MT. Il est probable que cette étude puisse nous donner de nouvelles
idées par rapport à l’analyse de la sortie de MT, c’est-à-dire dans notre application, le
contenu en mouvement dans les vidéos d’entrée.

Plus des validations?

Bien sûr, plus de validations sont aussi nécessaires. Nous avons testé notre modèle
avec la base de données de Weizmann. La bonne performance obtenue avec notre
modèle, tant que pour l’architecture analogique, que pour l’architecture évènemen-
tielle, montre le bien fondé de la répresentation de nos cartes de mouvement.

La base de données de Weizmann a été aussi utilisée par Blank et al. (2005) et
Jhuang et al. (2007) pour valider leurs approches. Cependant, les conditions de tests
et le protocol d’expérimentation ne sont pas les mêmes que ceux considérés dans nos
expériences, donc les résultats pour la reconnaissance ne peuvent pas être comparés
d’une manière directe.

À partir de nos résultats, nous ne prétendons pas dire que notre modèle fonc-
tionne dans toutes les conditions. Mais cette réserve est en realité générale comme
Pinto et al. (2008) l’ont bien remarqué: Déclarer que le problème global de la recon-
naissance d’actions est résolu à partir des résultat obtenus pour une seule base de
données n’est pas réaliste. Conditions réelles comme les arrières-plans complexes,
lesrotations, les occlusions ou les distracteurs sont normalement pas inclus dans les
bases de données. Pour aller plus loin, des validations avec bases de données dif-
férentes (comme celle du KTH4) sont absolument nécessaires.

4http://www.nada.kth.se/cvap/actions/
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En plus de mener davantage de validations, nous pensons à deux autres perspec-
tives. La première est l’étude de comment l’information provenant de la forme peut
être ajoutée à notre modèle d’une manière dynamique et ainsi l’intégrer à nos cartes
de mouvement, particulièrement dans le cas des arrières-plans complexes où cette in-
tégration pourrait jouer un rôle important. La deuxième perspective est l’étude du
rôle des différents classificateurs dans nos résultats. La qualité de la représen-
tation de nos cartes de mouvement affecte clairement la performance dans la recon-
naissance. Mais, le choix du classificateur est aussi un élement crucial dans notre
système. Comme perspective, il serait aussi intéressant de faire un test de performance
(benchmark) entre différents classificateurs pour ainsi évaluer leur impact sur la per-
formance de la reconnaissance d’actions.

Nous avons aussi pensé à d’autres expériences à réaliser. Par exemple, nous nous
sommes interrogés sur l’existence de vues clés (keyframes). Comme il a été déjà de-
montré, toutes les vues d’une séquence d’action n’ont pas le même intérêt pour la recon-
naissance. Si seulement quelques vues clés sont montrées, nous pouvons tout de même
réaliser la reconnaissance d’actions sans difficulté. Il serait intéressant d’implémenter,
selon la complexité de l’information du mouvement de chaque séquence, une extraction
automatique des vues clé pour ainsi comparer seulement l’information la plus utile du
mouvement dans chaque séquence. Une autre série d’expériences serait liée à la recon-
naissance rapide. Suite aux expériences de reconnaissance rapide (ultra fast catego-
rization), effectuées notamment par Thorpe et al. (2001) et Thorpe and Fabre-Thorpe
(2001), nous pourrions étudier l’évolution de la performance de la reconnaissance au
cours du temps. En d’autres termes, combien de temps est requis pour avoir une per-
formance satisfaisante (taille de la fenêtre de temps, périodes d’echantillonage ∆t)?
Ces études pourraient être considérées comme une extension du rank-order-coding à
l’analyse vidéo. Les changements de la valeur de ∆t pourraient être aussi interprétés
en lien avec la “mémoire” du système, c’est-à-dire, combien d’information dans le passé
doit être prise pour avoir une bonne représentation de chaque action?

Comment comparer notre modèle avec l’existant?

Des modèles antérieurs ont permis de suggérer que la perception du mouvement bi-
ologique dépend de fortes interactions entre le chemin dédié au traitement du mouve-
ment et le chemin dédié au traitement de la forme (Blake and Shiffrar (2007)). Dans
le modèle proposé par Giese and Poggio (2003), le chemin du mouvement comme
le chemin de la forme apprennent des séquences ou certaines vues clé (snapshots)
de formes humaines et de pattern de flux-optique, respectivement. D’autre part,
l’information spatiale de ces patterns de mouvement est importante pour la re-
connaissance du mouvement biologique a été étudié par exemple par Hiris et al.
(2005). Plusieurs modèles ont été proposés pour contraindre dynamiquement
l’information du mouvement selon l’information locale de la forme (voir par exam-
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ple, Bayerl and Neumann (2007); Tlapale et al. (2008)).

Plus spécialement, Giese and Poggio (2003) ont proposé un modèle neurophysi-
ologique pour le traitement de l’information visuelle dans la voie dorsale (mouvement)
et ventrale (forme). Le modèle a été validé pour la reconnaissance d’actions util-
isant comme stimulus d’entrée des figures batôn construites à partir des séquences
réelles. En supposant qu’il n’y a pas d’interaction entre les deux voies, les auteurs
ont trouvé que chaque voie indépendamment est capable d’effectuer la reconnais-
sance d’actions. De plus, leur modèle présente des propriétés très intéressantes pour
la reconnaissance de mouvements biologiques, comme l’invariance à l’échelle spatiale
et temporelle, la robustesse au bruit ajouté aux stimuli d’entrée, etc. L’une des dif-
férences plus importantes avec notre approche est que plusieurs paramètres doivent
être ajustés pour considérer une nouvelle action. Dans notre cas, nous n’avons pas
besoin de ajuster des paramètres pour tenir compte d’une nouvelle action. Il suffit
d’insérer les nouvelles cartes de mouvement dans le training set.

Dans le travail plus récent de Jhuang et al. (2007), les auteurs implementent
aussi une invariance à l’échelle spatiale et temporelle (c’est-à-dire, à la taille du
stimulus et la durée de l’action, respectivement). Leur approche utilise un mod-
èle bio-inspiré pour la reconnaissance d’actions, inspiré par Giese and Poggio (2003)
et Serre et al. (2005). L’invariance à l’échelle spatiale et temporelle est obtenue en
choisissant autant de couches de détecteurs de mouvement que d’échelles spatio-
temporelles à détecter, suivi par un operateur max. Ces méchanismes peuvent facile-
ment être implémentés en ajoutant davantage de couches avec différentes échelles
spatio-temporelles, suivies par l’operateur max entre les différentes couches qui co-
dent la même direction de mouvement.

Contrairement aux modèles de flot-optique, où une seule valeur de vitesse est
associée à chaque point, notre modèle reproduit la richesse des interactions centre-
périphérie des cellules de MT en variant les géometries des périphéries (voir Figure
5.14 et Born (2000); Xiao et al. (1995, 1997b)). Les différentes géométries des pé-
riphéries donnent différents types de contrastes de mouvement, pour plusieurs ori-
entations en chaque point. De façon intéressante, nous avons montré qu’en ajoutant
cette diversité des cellules de MT, la performance de la reconnaissance d’action est
améliorée. Notre interprétation est que les cellules avec périphéries inhibitrices amè-
nent une information reliée aux contrastes de vitesses ou singularités dans le champ
de vitesse du stimulus d’entrée.

Concernant une comparaison quantitative, nous avons suivi le protocole exper-
imental presenté par Jhuang et al. (2007) pour comparer leurs résultats avec les
notres. Pour nos deux architectures, les résultats obtenus avec mean motion maps
et synchrony motion maps ont montré une haute variabilité selon les séquences con-
sidérées dans le training set. À cause de cette haute variabilité trouvé edans nos
résultats, la comparaison directe avec Jhuang et al. (2007) n’est pas évidente, et les
pourcentages de reconnaissance ne sont pas représentatifs.
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11.2.3 La suppression périphérique des cellules de V1: analyse de
résultats

Comme nous l’avons déjà mentionné dans le Chapitre 9, nous avons obtenu un petit
décalage dans la direction préférée des neurones de MT par rapport aux valeurs rap-
portées par Pack et al. (2004). Par conséquent, nous avons besoin d’ajouter des mé-
canismes supplémentaires pour vraiment résoudre le problème de l’ouverture. Pour
obtenir une solution satisfaisante au problème d’ouverture, plusieurs solutions pour-
raient être analysées:

• Les changements de la direction préférée d’un neurone de MT dépend de
plusieurs paramètres au cours d’une étape non-linéaire, à la sortie du traite-
ment de V1. Cette dépendance est cohérente avec les résultats rapportés par
Rust et al. (2006) exprimant que la sélectivité des neurones de MT de type
“pattern” dépend fortement du traitement non-linéaire (par exemple, avec la
normalisation divisive) autant au niveau de V1 que de MT. Les non-linéarités
jouent apparemment un rôle fondamental qui doit être clarifié.

• Différent types d’interactions centre-périphérie en travaillant en différent
échelles spatiales et avec différentes orientations relatives pourraient être une
alternative à l’extraction de caractéristiques 2D du mouvement.

• Un meilleur processus de diffusion de l’information 2D pourrait être réalisé
en utilisant des interactions anisotropes entre neurones placés à différents en-
droits du champ visuel (voir par exemple Tlapale et al. (2008)).

• L’information 2D extraite par le mécanisme de suppression périphérique dans
les neurones de V1 pourrait être aussi étudiée dans ce cadre. Dans le cas des
plaids type II ou plaids unicinétiques, le mouvement perçu pourrait être asso-
cié à la détection du mouvement de caractéristiques 2D qui ont une fréquence
spatiale plus basse que les gratings utilisés pour le stimulus (Wilson et al.
(1992)). Le réglage spatiotemporel des neurones de V1 utilisés pour l’extraction
de l’information 2D est crucial pour détecter ce type de caractéristiques, et pour
avoir aussi une forte réponse aux caractéristiques 2D.

Nous avons aussi exploré l’effet de la suppression périphérique des neurones de
V1 pour différents stimuli comme les plaids de type I, les plaids de type II et les plaids
unicinétiques. Le seul plaid pour laquel un déplacement dans la direction préférée
d’un neurone de MT a été perçu, est le cas du plaid unicinétique, avec un déplacement
d’environ 10◦. Nous attendions un déplacement similaire pour les plaids de type II,
mais dans nos expériences la suppression périphérique des neurones de V1 n’a pas
affecté la direction préférée des neurones de MT. Nous croyons que cet effet est relié
à la précision de la fréquence spatio-temporelle qui doit être “vu’ par nos détecteurs
de mouvement de V1, où le réglage fréquentiel des neurones de V1 est essentiel pour
extraire de manière correcte les caractéristiques du mouvement 2D.
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Le modèle des neurones de V1 défini dans le Chapitre 9 peut être formalisé comme
un modèle de masse neurale où plusieurs résultats théoriques et expérimentaux sont
déjà établis (voir par exemple, Faugeras et al. (2009); Giese (1998)). En fait, l’équation
(9.1) est équivalente au modèle à voltage de masse neurale, où la population des neu-
rones dans notre cas serait la combination de quatre neurones simples (voir équation
(5.9)). L’implémentation du modèle de masse neurale requiert une analyse mathé-
matique plus profonde: Il faut étudier les solutions stationnaires, la stabilité, le di-
agramme de bifurcations, etc. Par exemple, il serait intéressant d’étudier si le nom-
bre des solutions change (multistabilité) avec différentes configurations de centre-
périphérie des neurones de V1 ou MT.

11.2.4 Contribution logiciele

Un effort considérable a été mené pour implémenter les méthodes nécessaires afin de
construire les réseaux de neurones, les neurones évènementiels, le filtrage du mou-
vement basé sur l’energie, etc...

En particulier, nous avons chercher à bien comprendre et optimiser le filtrage
spatio-temporel nécessaire au calcul du mouvement basé sur l’énergie. Cette étape
représente le calcul le plus exigeant. Cette partie du travail sera bientôt disponible
comme une bibliothèque libre en C/C++.

L’implémentation des neurones évènementiels a été faite grâce à la bibliothèque
MVAspike développée par Rochel (2004). Cette bibliothèque nous a permi de créer
des couches de neurones évènementiels et de les relier.
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CHAPTER 12

PUBLICATIONS ARISING FROM

THIS WORK

Journal papers

1. Maria-Jose Escobar, Guillaume S. Masson, Thierry Vieville, Pierre Kornprobst.
Action Recognition Using a Bio-Inspired Feedforward Spiking Network. Inter-
national Journal of Computer Vision (IJCV), Volume 82, Number 3, Pages 284–
301, 2009.

Conference papers

1. Maria-Jose Escobar, Pierre Kornprobst. Action Recognition with a Bio-Inspired
Feedforward Motion Processing Model: The Richness of Center-Surround Inter-
actions. Computer Vision - ECCV, Lecture Notes in Computer Science, pages
186-199, 2008.

2. Maria-Jose Escobar, Guillaume S. Masson and Pierre Kornprobst. A Simple
Mechanism to Reproduce the Neural Solution of the Aperture Problem in Monkey
Area MT. Neurocomp 2008.

3. Maria-Jose Escobar, Thierry Vieville and Pierre Kornprobst. Biological Motion
Recognition Using a MT-like Model. Neurocomp 2006.

Conference abstracts

1. Maria-Jose Escobar, Guillaume S. Masson, Thierry Vieville and Pierre Korn-
probst. Spiking MT model: Dynamics and motion patterns. European Confer-
ence in Visual Perception (ECVP), 2007.

2. Maria-Jose Escobar, Thierry Vieville and Pierre Kornprobst. Spike to Spike
Model and Applications. Computational Neuroscience Meeting (CNS), 2007.

3. Maria-Jose Escobar, Adrien Wohrer, Pierre Kornprobst and Thierry Vieville.
Can we recognize motion from spike train analysis?. European Conference in
Visual Perception (ECVP), 2006.
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Research Reports

1. Maria-Jose Escobar, Guillaume S. Masson, Thierry Vieville and Pierre Korn-
probst. Rate Versus Synchrony Code for Human Action Recognition. INRIA
Research Report RR-6669, 2008.

2. Maria-Jose Escobar, Guillaume S. Masson and Pierre Kornprobst. A Simple
Mechanism to Reproduce the Neural Solution of the Aperture Problem in Monkey
Area MT. INRIA Research Report RR-6579, 2008.

3. Maria-Jose Escobar, Guillaume S. Masson, Thierry Vieville and Pierre Korn-
probst. Spike to Spike Model and Applications: A biological plausible approach
for the motion processing. INRIA Research Report RR-6280, 2007.
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D. Nikolić: 2006, ‘Brightness induction: rate enhancement and neuronal synchro-
nization as complementary codes.’. Neuron 52(6), 1073–1083. 07042. [128]

Black, M.: 1992, ‘Robust incremental optical flow’. Ph.D. thesis, Yale University,
Department of Computer Science. [47]

190



Black, M. and P. Rangarajan: 1996, ‘On the unification of line processes, outlier re-
jection, and robust statistics with applications in early vision’. The International
Journal of Computer Vision 19(1), 57–91. [47]

Blake, R. and M. Shiffrar: 2007, ‘Perception of Human Motion’. Annual Review of
Psychology (58), 12.1–12.27. [103, 169, 182]

Blank, M., L. Gorelick, E. Shechtman, M. Irani, and R. Basri: 2005, ‘Actions as Space-
Time Shapes’. In: Proceedings of the 10th International Conference on Computer
Vision, Vol. 2. pp. 1395–1402. [101, 102, 124, 142, 168, 181]

Bobick, A. and J. Davis: 2001, ‘The recognition of human movement using temporal
templates’. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(3),
257–267. [101]

Born, R. and D. Bradley: 2005, ‘Structure and Function of Visual Area MT’. Annu.
Rev. Neurosci 28, 157–189. [31]

Born, R. T.: 2000, ‘Center-Surround Interactions in the Middle Temporal Visual Area
of the Owl Monkey’. Journal of Neurophysioly 84, 2658–2669. [37, 39, 92, 134, 166,
170, 178, 179, 183]

Born, R. T., C. C. Pack, C. Ponce, and S. Yi: 2006, ‘Temporal Evolution of 2–
Dimensional Direction Signals Used to Guide Eye Movements’. Journal of Neu-
rophysiology 95, 284–300. [38, 148]

Borst, A.: 2007, ‘Correlation versus gradient type motion detectors: the pros and
cons’. Philosophical Transactions of the Royal Society of London: Series B, biologi-
cal sciences 362(1479), 369–374. [45, 53]

Buracas, G. T. and T. D. Albright: 1996, ‘Contribution of area MT to perception of
three-dimensional shape: a computational study.’. Vision Res 36(6), 869–87. [36]

Carandini, M., J. B. Demb, V. Mante, D. J. Tollhurst, Y. Dan, B. A. Olshausen, J. L.
Gallant, and N. C. Rust: 2005, ‘Do we know what the early visual system does?’.
Journal of Neuroscience 25(46), 10577–10597. [24]

Casile, A. and M. Giese: 2003, ‘Roles of motion and form in biological motion recog-
nition’. Artifical Networks and Neural Information Processing, Lecture Notes in
Computer Science 2714 pp. 854–862. [104]

Casile, A. and M. Giese: 2005, ‘Critical features for the recognition of biological mo-
tion’. Journal of Vision 5, 348–360. [104, 164, 177]

Cessac, B., H. Rostro, J.-C. Vasquez, and T. Viéville: 2008, ‘Statistics of spikes trains,
synaptic plasticity and Gibbs distributions,’. In: proceedings of the conference Neu-
roComp 2008 (Marseille). [128]

191



Chapman, B., K. Zahs, and M. Stryker: 1991, ‘Relation of cortical cell orientation
selectivity to alignment of receptive fields of the geniculocortical afferents that ar-
borize within a single orientation column in ferret visual cortex’. Journal of Neu-
roscience 11(5), 1347–1458. [23]

Chey, J., S. Grossberg, and E. Mingolla: 1997, ‘Neural dynamics of motion processing
and speed discrimination’. Vision Res. 38, 2769–2786. [vi, 71, 72]

Chomat, O., J. Martin, and J. L. Crowley: 2000, ‘A probabilistic sensor for the percep-
tion and recognition of activities’. In: Proceedings of the 6th European Conference
on Computer Vision, Vol. 1842. Dublin, Ireland: Springer Berlin / Heidelberg, pp.
487–503. [102]

Churchland, A. and S. Lisberger: 2005, ‘Discharge properties of MST neurons that
project to the frontal pursuit area in macaque monkeys’. The Journal of Neuro-
physiology 94(2), 1084–1090. [41]

Churchland, M. M., N. J. Priebe, and S. G. Lisberger: 2005, ‘Comparison of the Spatial
Limits on Direction Selectivity in Visual Areas MT and V1’. Journal of Neurophys-
iology 93, 1235—1245. [31, 32, 34, 165, 178]

Collins, R., R. Gross, and J. Shi: 2002, ‘Silhouette-based human identification from
body shape and gait’. In: 5th Intl. Conf. on Automatic Face and Gesture Recognition.
p. 366. [102]

Conway, B. and M. Livingstone: 2003, ‘Space-Time Maps and Two-Bar Interactions
of Different Classes of Direction-Selective Cells in Macaque V1’. Journal of Neuro-
physiology 89, 2726–2742. [25, 48, 81]

Cutler, R. and L. Davis: 2000, ‘Robust real-time periodic motion detection, analysis,
and applications’. IEEE Transactions on Pattern Analysis and Machine Intelligence
22(8). [102]

Dayan, P. and L. F. Abbott: 2001, Theoretical Neuroscience : Computational and
Mathematical Modeling of Neural Systems. MIT Press. [130]

De Valois, R., N. Cottaris, et al.: 2000, ‘Spatial and temporal receptive fields of genic-
ulate and cortical cells and directional selectivity’. Vision Research 40, 3685–3702.
[23, 24, 25, 27, 81, 83]

Deangelis, G. C. and A. Akiyuki: 2004, ‘A Modern View of the Classical Receptive
Field: Linear and Nonlinear Spatiotemporal Processing by V1 Neurons.’. In: L. M.
Challupa and J. S. Werner (eds.): The Visual Neurosciences, Vol. 1. MIT press, pp.
704–719. [25, 26]

Derrington, A. M. and B. S. Webb: 2004, ‘Visual System: How is the Retina Wired Up
to the Cortex?’. Current Biology 14, R14–R15. [24]

192



Destexhe, A., M. Rudolph, and D. Paré: 2003, ‘The high-conductance state of neocor-
tical neurons in vivo’. Nature Reviews Neuroscience 4, 739–751. [112, 131]

Dollar, P., V. Rabaud, G. Cottrell, and S. Belongie: 2005, ‘Behavior recognition via
sparse spatio-temporal features’. In: VS-PETS. pp. 65–72. [101, 103]

Dow, B. M., A. Z. Snyder, R. G. Vautin, and R. Bauer: 1981, ‘Magnification factor
and receptive field size in foveal striate cortex of the monkey’. Experimental Brain
Research 44, 213–228. [32]

Duffy, C. and R. Wurtz: 1991, ‘Sensitivity of MST neurons to optic flow stimuli. I. A
continuum of response selectivity to large-field stimuli’. The Journal of Neurophys-
iology 65(5), 1329–1345. [41]

Duffy, C. and R. Wurtz: 1997, ‘MST neurons code for visual motion in space inde-
pendent of pursuit eye movements’. Journal of Neurophysiology 97(5), 3473–3483.
[42]

Efros, A., A. Berg, G. Mori, and J. Malik: 2003, ‘Recognizing Action at A Distance’.
In: Proceedings of the 9th International Conference on Computer Vision, Vol. 2. pp.
726–734. [101, 102]

Emerson, R., M. Citron, W. Vaughn, and S. Klein: 1987, ‘Nonlinear directionally
selective subunits in complex cells of cat striate cortex’. Journal of Neurophysiology
58(1), 33–65. [25]

Enkelmann, W.: 1988, ‘Investigation of multigrid algorithms for the estimation of
optical flow fields in image sequences’. Computer Vision, Graphics, and Image Pro-
cessing 43, 150–177. [47]

Erol, A., G. Bebisa, M. Nicolescua, R. D. Boyleb, and X. Twomblyb: 2007, ‘Vision-
based hand pose estimation: A review’. Computer Vision and Image Understanding
108(1–2), 52–73. [101]

Escobar, M.-J. and P. Kornprobst: 2008, ‘Action Recognition with a Bio–Inspired Feed-
forward Motion Processing Model: The Richness of Center-Surround Interactions’.
In: Proceedings of the 10th European Conference on Computer Vision, Vol. 5305 of
LNCS. pp. 186–199, Springer–Verlag. [102]

Fanti, C., L. Zelnik-Manor, and P. Perona: 2005, ‘Hybrid models for human motion
recognition’. In: Proceedings of the International Conference on Computer Vision
and Pattern Recognition, Vol. 1. pp. 1166–1173. [102]

Fathi, A. and G. Mori: 2008, ‘Action recognition by learning mid-level motion fea-
tures’. In: Proceedings of the International Conference on Computer Vision and
Pattern Recognition. pp. 1–8. [102]

193



Faugeras, O., R. Veltz, and F. Grimbert: 2009, ‘Persistent neural states: stationary lo-
calized activity patterns in nonlinear continuous n-population, q-dimensional neu-
ral networks’. Neural Computation 21(1), 147–187. [171, 185]

Felleman, D. and D. Van Essen: 1991, ‘Distributed hierarchical processing in the
primate cerebral cortex’. Cereb Cortex 1, 1–47. [2, 10, 31, 33]

Fellous, J.-M., P. H. E. Tiesinga, P. J. Thomas, and T. J. Sejnowski: 2004, ‘Discovering
Spike Patterns in Neural Responses’. The Journal of Neuroscience 24(12), 2989–
3001. [128, 130]

Ferrera, V. and H. Wilson: 1990, ‘Perceived direction of moving two-dimensional pat-
terns’. Vision Research 30(2), 273–287. [57, 58]

Fleet, D. and A. Jepson: 1990, ‘Computation of component image velocity from local
phase information’. The International Journal of Computer Vision 5, 77–104. [47]

Fleet, D. J. and A. D. Jepson: 1989, ‘Hierarchical Construction of Orientation and
Velocity Selective Filters’. pami 11(3), 315–325. [48]

Fleet, D. J. and Y. Weiss: 2005, ‘Optical Flow Estimation’. In: N. Paragios, Y. Chen,
and O. Faugeras (eds.): Mathematical Models for Computer Vision: The Handboook.
Springer. [45]

Fries, P., S. Neuenschwander, A. K. Engel, R. Goebel, and W. Singer: 2001, ‘Rapid fea-
ture selective neuronal synchronization through correlated latency shifting.’. Nat
Neurosci 4(2), 194–200. 07045. [128]

Gautrais, J. and S. Thorpe: 1998, ‘Rate Coding vs Temporal Order Coding : a theorical
approach’. Biosystems 48, 57–65. [127]

Gavrila, D.: 1999, ‘The visual analysis of human movement: A survey’. Computer
Vision and Image Understanding 73(1), 82–98. [101, 102]

Gavrila, D. and L. Davis: 1996, ‘3-D Model-based Tracking of Humans in Action: a
Multi-view Approach’. In: Proceedings of the International Conference on Computer
Vision and Pattern Recognition. San Francisco, CA, IEEE. [102]

Geesaman, B. and R. Andersen: 1996, ‘The analysis of complex motion patterns by
form/cue invariant MSTd neurons’. The Journal of Neuroscience 16(15), 4616–4632.
[42]

Gerstner, W. and W. Kistler: 2002, Spiking Neuron Models. Cambridge University
Press. [112, 128, 134]

Giese, M.: 1998, Dynamic Neural Field Theory for Motion Perception. Springer. [171,
185]

194



Giese, M. and T. Poggio: 2003, ‘Neural mechanisms for the recognition of biological
movements and actions’. Nature Reviews Neuroscience 4, 179–192. [vi, 66, 67, 103,
104, 105, 106, 108, 169, 170, 182, 183]

Gollisch, T. and M. Meister: 2008, ‘Rapid Neural Coding in the Retina with Relative
Spike Latencies’. Science 319, 1108–1111. DOI: 10.1126/science.1149639. [127,
163, 175]

Goncalves, L., E. DiBernardo, E. Ursella, and P. Perona: 1995, ‘Monocular tracking
of the human arm in 3D’. In: Proceedings of the 5th International Conference on
Computer Vision. pp. 764–770. [101]

Goodale, M. A. and A. D. Milner: 1992, ‘Separate visual pathways for perception and
action’. Trends in neurosciences 15(1), 20–25. [23]

Gorelick, L., M. Blank, E. Shechtman, M. Irani, and R. Basri: 2007, ‘Actions as Space-
Time Shapes’. pami 29(12), 2247–2253. [101]

Grammont, F. and A. Riehle: 2003, ‘Spike synchronization and firing rate in a pop-
ulation of motor cortical neurons in relation to movement direction and reaction
time’. Biological cybernetics 88(5), 260–373. [128, 167, 180]

Graziano, M., R. Andersen, and R. Snowden: 1994, ‘Tuning of MST neurons to spiral
motions’. The Journal of Neuroscience 14(1), 54–67. [42]

Grossberg, S. and E. Mingolla: 1985, ‘Neural dynamics of form perception: boundary
completion, illusory figures, and neon color spreading’. Psychological review 92(2),
173–211. [71]

Grossberg, S., E. Mingolla, and L. Viswanathan: 2001, ‘Neural dynamics of motion
integration and segmentation within and across apertures’. Vision Research 41(19),
2521–2553. [44, 71, 72, 73, 76]

Grossman, E., M.Donnelly, R. Price, D. Pickens, V. Morgan, G. Neighbor, and R.
Blake: 2000, ‘Brain Areas Involved in Perception of Biological Motion’. Journal
of Cognitive Neuroscience 12(5), 711–720. [104]

Grzywacz, N. and A. Yuille: 1990, ‘A model for the estimate of local image velocity by
cells on the visual cortex’. Proc R Soc Lond B Biol Sci. 239(1295), 129–161. [48, 58,
59, 60, 61, 63, 80, 114, 164, 177]

Guichard, F. and L. Rudin: 1996, ‘Accurate estimation of discontinuous optical flow
by minimizing divergence related functionals’. In: Proceedings of the International
Conference on Image Processing, Vol. I. pp. 497–500. [47]

Gupta, S. and J. Prince: 1996, ‘On div-curl regularization for motion estimation in
3-d volumetric imaging’. In: Proceedings of the International Conference on Image
Processing. pp. 929–932. [47]

195



Heeger, D. J.: 1992, ‘Normalization of cell responses in cat striate cortex’. Visual
Neuroscience 9, 181–197. [57]

Hérault, J. and B. Durette: 2007, ‘Modeling Visual Perception for Image Processing’.
In: F. Sandoval, A. Prieto, J. Cabestany, and M. Gra na (eds.): Computational
and Ambient Intelligence : 9th International Work-Conference on Artificial Neural
Networks, IWANN 2007. [167, 179]

Hirai, M. and K. Hiraki: 2006, ‘Neural Dynamics for Biological Motion Perception’.
In: F. J. Chen (ed.): Trends in Brain Mapping Research. Nova Sciences Publishers,
pp. 85–116. [3, 12, 104]

Hiris, E., D. Humphrey, and A. Stout: 2005, ‘Temporal Properties in Masking Biolog-
ical Motion’. Perception and Psychophysics 67(3), 435–443. [169, 182]

Hogg, D.: 1983, ‘Model-based vision: a paradigm to see a walking person’. Image and
Vision Computing 1(1), 5–20. [101]

Horn, B. and B. Schunck: 1981, ‘Determining Optical Flow’. Artificial Intelligence 17,
185–203. [47]

Huang, X., T. D. Albright, and G. R. Stoner: 2007, ‘Adaptive Surround Modulation in
Cortical Area MT’. Neuron 53, 761–770. [4, 13, 37, 39, 92]

Huang, X., T. D. Albright, and G. R. Stoner: 2008, ‘Stimulus Dependency and Mech-
anisms of Surround Modulation in Cortical Area MT’. Journal of Neuroscience
28(51), 13889–13906. [37, 39]

Hubel, D. and T. Wiesel: 1962, ‘Receptive fields, binocular interaction and functional
architecture in the cat visual cortex.’. J Physiol 160, 106–154. [23, 24, 25, 48]

Hubel, D. H. and T. N. Wiesel: 1960, ‘Receptive fields of optic nerve fibres in the spider
monkey’. J. Physiol. 154, 572–80. [24]

Ilg, U.: 2008, ‘The role of areas MT and MST in coding of visual motion underlying
the execution of smooth pursuit’. Vision Research 48(20), 2062–2069. [41]

Inaba, N., S. Shinomoto, S. Yamane, A. Takemura, and K. Kawano: 2007, ‘MST neu-
rons code for visual motion in space independent of pursuit eye movements’. Jour-
nal of Neurophysiology 97(5), 3473–3483. [41]

Irani, M. and S. Peleg: 1993, ‘Motion analysis for image enhancement: resolution,
occlusion, and transparency’. Journal on Visual Communications and Image Rep-
resentation 4(4), 324–335. [47]

Izhikevich, E.: 2004, ‘Which model to use for cortical spiking neurons?’. IEEE Trans
Neural Netw 15(5), 1063–1070. [131]

196



Jhuang, H., T. Serre, L. Wolf, and T. Poggio: 2007, ‘A biologically inspired system
for action recognition’. In: Proceedings of the 11th International Conference on
Computer Vision. pp. 1–8. [vi, ix, 102, 103, 106, 107, 108, 110, 119, 120, 123, 137,
139, 168, 169, 170, 181, 183]

Jiang, H. and D. R. Martin: 2008, ‘Finding Actions Using Shape Flows’. In: Pro-
ceedings of the 10th European Conference on Computer Vision, Vol. 5303 of Lecture
Notes in Computer Science. Springer Berlin / Heidelberg, pp. 278–292. [101]

Johansson, G.: 1973, ‘Visual perception of biological motion and a model for its anal-
ysis’. Perception and Psychophysics 14, 201–211. [3, 11, 103]

Jones, H., K. Grieve, W. Wang, and A. Sillito: 2001, ‘Surround Suppression in Primate
V1’. Journal of Neurophysiology 86, 2011–2028. [28, 29, 60, 151, 164, 176]

Kara, P. and R. C. Reid: 2003, ‘Efficacy of Retinal Spikes in Driving Cortical Re-
sponses’. The Journal of Neuroscience 23(24), 8547–8557. [23, 24]

Kawano, K., M. Shidara, Y. Watanabe, and S. Yamane: 1994, ‘Neural activity in
cortical area MST of alert monkey during occular following responses’. The Journal
of Neurophysiology 71(6), 2305–2324. [42]

Kim, T.-K., S.-F. Wong, and R. Cipolla: 2007, ‘Tensor Canonical Correlation Analy-
sis for Action Classification’. In: Proceedings of the International Conference on
Computer Vision and Pattern Recognition. pp. 1–8. [102]

Kreuz, T., J. S. Haas, A. Morelli, H. D. Abarbanel, and A. Politi: 2007, ‘Measuring
spike train synchrony’. Journal of Neuroscience Methods 165, 151–161. [130, 163,
176]

Lagae, L., S. Raiguel, and G. A. Orban: 1993, ‘Speed and direction selectivity of
macaque middle temporal neurons’. Journal of Neurophysiology 69(1), 19–39. [32,
34, 165, 178]

Landy, M. S. and J. R. Bergen: 1991, ‘Texture Segregation and Orientation Gradient’.
Vision Research 31(4), 679–691. [69]

Laptev, I., B. Caputo, C. Schuldt, and T. Linderberg: 2007, ‘Local velocity-adapted
motion events for spatio-temporal recognition’. Computer vision and image under-
standing 108, 207–229. [101, 102, 103]

Laptev, I., M. Marszalek, C. Schmid, and B. Rozenfeld: 2008, ‘Learning realistic hu-
man actions from movies’. In: Proceedings of the International Conference on Com-
puter Vision and Pattern Recognition. pp. 1–8. [102]

Laptev, I. and P. Perez: 2007, ‘Retrieving actions in movies’. In: Proceedings of the
11th International Conference on Computer Vision. pp. 1–8. [102]

197



Levitt, J. and J. Lund: 1997, ‘Contrast dependence of contextual effects in primate
visual cortex’. Nature 387(6628), 73–76. [30, 31]

Li, B., J. Thompson, T. Duong, M. Peterson, and R. Freeman: 2006, ‘Origins of Cross-
Orientation Suppression in the Visual Cortex’. Journal of Neurophysiology 96,
1755–1764. [28]

Li, C. and W. Li: 1994, ‘Extensive integration field beyond the classical receptive
field of cat’s striate cortical neurons–classification and tuning properties’. Vision
Research 34(18), 2337–2355. [29]

Liu, J., S. Ali, and M. Shah: 2008, ‘Recognizing human actions using multiple fea-
tures’. In: Proceedings of the International Conference on Computer Vision and
Pattern Recognition. pp. 1–8. [102]

Liu, J. and W. T. Newsome: 2003, ‘Functional Organization of Speed Tuned Neurons
in Visual Area MT’. Journal of Neurophysiology 89, 246–256. [114]

Liu, J. and M. Shah: 2008, ‘Learning human actions via information maximization’.
In: Proceedings of the International Conference on Computer Vision and Pattern
Recognition. pp. 1–8. [102]

Livingstone, M. S. and B. R. Conway: 2003, ‘Substructure of direction–selectivity
receptive fields in macaque V1’. Journal of Neurophysiology 89, 2743–2759. [24]

Lowe, D.: 2004, ‘Distinctive image features from scale-invariant keypoints’. Interna-
tional Journal of Computer Vision 60(2), 91–110. [102]

Lui, L. L., J. A. Bourne, and M. G. P. Rosa: 2007, ‘Spatial Summation, End Inhi-
bition and Side Inhibition in the Middle Temporal Visual Area MT’. Journal of
Neurophysiology 97(2), 1135. [36]

Majaj, N., M. Carandini, and M. J.A.: 2007, ‘Motion Integration by Neurons in
Macaque MT Is Local, Not Global’. The Journal of Neuroscience 27(2), 366–370.
[40]

Maldonado, P., C. Babul, W. Singer, E. Rodriguez, D. Berger, and S. Grün: 2008, ‘Syn-
chronization of Neuronal Responses in Primarly Visual Cortex of Monkeys Viewing
Natural Images’. Journal of Neurophysiology 100, 1523–1532. [167, 180]

Mante, V. and M. Carandini: 2005, ‘Mapping of stimulus energy in primary visual
cortex’. Journal of Neurophysiology 94, 788—798. [80, 94]

Masson, G. and E. Castet: 2002, ‘Parallel motion processing for the initiation of short-
latency ocular following in humans’. The journal of neuroscience 22(12), 5147–5163.
[57]

198



Maunsell, J. and D. V. Essen: 1983, ‘Functional properties of neurons in middle tem-
poral visual area of the macaque monkey. II. Binocular interactions and sensitivity
to binocular disparity.’. J Neurophysiol 49, 1148–1167. [34]

Maunsell, J. H. and D. C. Van Essen: 1983, ‘The Connections of the Middle Temporal
Visual Area (MT) and their Relationship to a Cortical Hierarchy in the Macaque
Monkey’. The Journal of Neuroscience 3(12), 2563–2586. [32, 41]

Mestre, D. R., G. S. Masson, and L. S. Stone: 2001, ‘Spatial scale of motion segmen-
tation from speed cues’. Vision Research 41(21), 2697–2713. [32]

Michels, L., M. Lappe, and L. Vaina: 2005, ‘Visual areas involved in the perception of
human movement from dynamic analysis’. Brain Imaging 16(10), 1037–1041. [3,
12, 104]

Mikami, A., W. Newsome, and R. Wurtz: 1986, ‘Motion selectivity in macaque visual
cortex. II. Spatiotemporal range of directional interactions in MT and V1’. Journal
of Neurophysiology 55(6), 1328–1339. [34]

Milner, A. D. and M. A. Goodale: 2008, ‘Two visual systems re–viewed’. Neuropsy-
chologia 46, 774–785. [23]

Mitra, S. and T. Acharya: 2007, ‘Gesture Recognition: A Survey’. IEEE Transactions
on Systems, Man, and Cybernetics (SMC) – Part C: Applications and Reviews 37(3),
311–324. [101]

Moeslund, T. B., A. Hilton, and V. Kr"uger: 2006, ‘A survey of advances in vision-based
human motion capture and analysis’. Computer Vision and Image Understanding
104(2–3), 90–126. [101]

Mokhber, A., C. Achard, and M. Milgram: 2008, ‘Recognition of human behavior by
space-time silhouette characterization’. Pattern Recognition Letters 29(1), 81–89.
[101]

Morrone, M., D. Burr, and L. Maffei: 1982, ‘Functional implications of cross-
orientation inhibition of cortical visual cells. I. Neurophysiological evidence’. Pro-
ceedings of the Royal Society of London, Series B 216(1204), 335–354. [28]

Movshon, J., E. Adelson, M. Gizzi, and W. Newsome: 1986, ‘The analysis of moving
visual patterns’. Experimental Brain Research 11, 117–151. [39]

Movshon, J., I. Thompson, and D. Tolhurst: 1978, ‘Receptive field organization of
complex cells in the cat’s striate cortex’. The Journal of Physiology 283(79–99). [25]

Movshon, J. A. and W. T. Newsome: 1996, ‘Visual Response Properties of Striate Cor-
tical Neurons Projecting to Area MT in Macaque Monkeys’. Journal of Neuroscience
16(23), 7733–7741. [31]

199



Mutch, J. and D. G. Lowe: 2006, ‘Multiclass Object Recognition with Sparse, Localized
Features’. In: Proceedings of the International Conference on Computer Vision and
Pattern Recognition. pp. 11–18. [103, 106]

Nagel, H.: 1983, ‘Constraints for the Estimation of Displacement Vector Fields from
Image Sequences’. In: International Joint Conference on Artificial Intelligence. pp.
156–160. [47]

Nagel, H.: 1989, ‘On a constraint equation for the estimation of displacement rates in
image sequences’. IEEE Transactions on Pattern Analysis and Machine Intelligence
11, 13–30. [47]

Nagel, H.-H.: 1987, ‘On the estimation of optical flow: relations between different
approaches and some new results’. Artificial Intelligence Journal 33, 299–324. [47]

Nassi, J. J. and E. M. Callaway: 2006, ‘Multiple Circuits Relaying Primate Parallel
Visual Pathways to the Middle Temporal Area’. Journal of Neuroscience 26(49),
12789–12798. [31]

Nassi, J. J. and E. M. Callaway: 2007, ‘Specialized Circuits from Primary Visual
Cortex to V2 and area MT’. Neuron 55, 799–808. [32]

Nési, P.: 1993, ‘Variational approach to optical flow estimation managing discontinu-
ities’. Image and Vision Computing 11(7), 419–439. [47]

Neuenschwander, S., M. Castelo-Branco, and W. Singer: 1999, ‘Synchronous oscilla-
tions in the cat retina’. Vision Research 39(15), 2485–2497. [128]

Niebles, J. and L. Fei-Fei: 2007, ‘A Hierarchical Model of Shape and Appearance for
Human Action Classification’. In: Proceedings of the International Conference on
Computer Vision and Pattern Recognition. pp. 1–8. [102]

Niebles, J. C., H. Wang, and L. Fei-Fei: 2006, ‘Unsupervised Learning of Human
Action Categories Using Spatial-Temporal Words’. In: British Machine Vision Con-
ference. [103]

Niebles, J.-C., H. Wang, and L. Fei-Fei: 2008, ‘Unsupervised Learning of Human Ac-
tion Categories Using Spatial–Temporal Words’. Internation Journal of Computer
Vision 79(3), 299–318. [101]

Nowak, L. and J. Bullier: 1997, The Timing of Information Transfer in the Visual
System, Vol. 12 of Cerebral Cortex, Chapt. 5, pp. 205–241. Plenum Press, New
York. [127]

Nowlan, S. and T. Sejnowski: 1995, ‘A selection model for motion processing in area
MT of primates’. J. Neuroscience 15, 1195–1214. [44, 60, 64]

200



Nowlan, S. J. and T. J. Sejnowski: 1994, ‘Filter selection model for motion segmenta-
tion and velocity integration’. j. Opt. Soc. Am. A 11(12), 3177–3199. [vi, 44, 60, 62,
64]

Odobez, J. and P. Bouthemy: 1995, ‘Robust multiresolution estimation of parametric
motion models’. Journal of Visual Communication and Image Representation 6(4),
348–365. [47]

Ogata, T., W. Christmas, J. Kittler, and S. Ishikawa: 2006, ‘Improving human activity
detection by combining multi-dimensional motion descriptors with boosting’. In:
Proceedings of the International Conference on Pattern Recognition, Vol. 1. Kowloon
Tong, Hong Kong, pp. 295–298, comp-soc-press. [101]

Orban, G., F. Van Calenbergh, B. De Bruyn, and H. Maes: 1985, ‘Velocity discrimina-
tion in central and peripheral visual field’. Journal of the optical society of america,
A 2(11), 1836–1847. [34]

Otte, M. and H. Nagel: 1994, ‘Optical Flow Estimation: Advances and Comparisons’.
In: J.-O. Eklundh (ed.): Proceedings of the 3rd European Conference on Computer
Vision, Vol. 800 of Lecture Notes in Computer Science. pp. 51–70, Springer–Verlag.
[46]

Pack, C. and R. Born: 2001, ‘Temporal dynamics of a neural solution to the aperture
problem in visual area MT of macaque brain’. Nature 409, 1040–1042. [38, 60, 148,
150, 151]

Pack, C., B. Conway, R. Born, and M. Livingstone: 2006, ‘Spatiotemporal Structure
of Nonlinear Subunits in Macaque Visual Cortex’. Journal of Neuroscience 26(3),
893–907. [25, 32]

Pack, C., A. Gartland, and R. Born: 2004, ‘Integration of Contour and Terminator
Signals in Visual Area MT of Alert Macaque’. The Journal of Neuroscience 24(13),
3268–3280. [vii, 4, 13, 38, 148, 150, 151, 155, 157, 170, 184]

Pack, C. C., J. N. Hunter, and R. T. Born: 2005, ‘Contrast Dependence of Suppressive
Influences in Cortical Area MT of Alert Macaque’. Journal of Neurophysiology
93(3), 1809–1815. [31]

Pack, C. C., M. S. Livingstone, K. R. Duffy, and R. T. Born: 2003, ‘End-Stopping and
the Aperture Problem: Two-Dimensional Motion Signals in Macaque V1’. Neuron
39(4), 671–680. [38, 151]

Perkel, D. H. and T. H. Bullock: 1968, ‘Neural coding’. Neurosciences Research Pro-
gram Bulletin 6, 221–348. [127]

Perrone, J.: 2004, ‘A visual motion sensor based on the properties of V1 and MT
neurons’. Vision Research 44, 1733–1755. [44, 54, 114, 164, 177]

201



Perrone, J. and R. Krauzlis: 2008, ‘Spatial integration by MT pattern neurons: a
closer look at pattern-to-component effects and the role of speed tuning’. Journal
of Vision 8(9), 1–14. [40]

Perrone, J. and A. Thiele: 2001, ‘Speed skills: measuring the visual speed analyzing
properties of primate MT neurons’. Nature Neuroscience 4(5), 526–532. [34, 54, 55,
114, 164, 177]

Pinto, N., D. D. Cox, and J. J. DiCarlo: 2008, ‘Why is Real-World Visual Object Recog-
nition Hard?’. PLoS Comput Biol 4(1), e27. [168, 181]

Polana, R. and R. Nelson: 1997, ‘Detection and recognition of periodic, non-rigid mo-
tion’. ijcv 23(3), 261–282. [102]

Poppe, R.: 2007, ‘Vision–based human motion analysis: An overview’. Computer
Vision and Image Understanding 108(1–2), 4–18. [101]

Potters, M. and W. Bialek: 1994, ‘Statistical mechanics and visual signal processing’.
Journal de Physique I France 4, 1755–1775. [53]

Priebe, N., C. Cassanello, and S. Lisberger: 2003, ‘The neural representation of speed
in macaque area MT/V5’. Journal of Neuroscience 23(13), 5650–5661. [28, 34, 35,
40, 114, 164, 177]

Priebe, N. J., S. G. Lisberger, and A. J. Movshon: 2006, ‘Tuning for Spatiotemporal
Frequency and Speed in Directionally Selective Neurons of Macaque Striate Cor-
tex’. The Journal of Neuroscience 26(11), 2941–2950. [25, 34, 164, 177]

Pucel, A. and D. Perret: 2003, ‘Electrophysiology and brain imaging of biological
motion’. Philosophical transactions of the Royal Society B 358(1431), 435–445. [3,
12, 104]

Ragheb, H. and E. Hancock: 2003, ‘A probabilistic framework for specular Shape-
from-Shading’. Pattern Recog. 36, 407–427. [101]

Reichardt, W.: 1957, ‘Autokorrelationsauswertung als Funktionsprinzip des Zentral-
nervensystems’. Zeitschrift fur Naturforschung 12, 447–457. [52]

Riehle, A., S. Grün, M. Diesmann, and A. Aertsen: 1997, ‘Spike Synchronization and
Rate Modulation Differentially Involved in Motor Cortical Function’. Science 278,
1950–1953. [167, 180]

Rieke, F., D. Warland, R. de Ruyter van Steveninck, and W. Bialek: 1997, Spikes:
Exploring the Neural Code. Bradford Books. [128, 130]

Ringach, D. L.: 2002, ‘Spatial Structure and Symmetry of Simple-Cell Receptive
Fields in Macaque Primary Visual Cortex’. Journal of Neurophysiology 88, 455–
463. [25, 27, 48]

202



Rochel, O.: 2004, ‘Une approche événementielle pour la modélisation et la simulation
de neurones impulsionnels’. Ph.D. thesis, Université Henri Poincaré - Nancy 1.
[172, 185]

Rodman, H. R. and T. D. Albright: 1989, ‘Single-unit analysis of pattern-motion se-
lective properties in the middle temporal visual area (MT)’. Experimental Brain
Research 75, 53–64. [40]

Roelfsema, P. R., V. A. F. Lamme, and H. Spekreijse: 2004, ‘Synchrony and covaria-
tion of firing rates in the primary visual cortex during contour grouping’. Nature
Neuroscience 7(9), 982–991. [128]

Rohr, K.: 1994, ‘Toward model-based recognition of human movements in image se-
quences’. CVGIP, Image Understanding 1, 94–115. [101]

Rust, N., V. Mante, E. Simoncelli, and J. Movshon: 2006, ‘How MT cells analyze the
motion of visual patterns’. Nature Neuroscience 9, 1421–1431. [170, 184]

Saito, H., M. Yukie, K. Tanaka, K. Hikosaka, Y. Fukada, and E. Iwai: 1986, ‘Inte-
gration of direction signals of image motion in the superior temporal sulcus of the
macaque monkey’. The Journal of Neuroscience 6(1), 145–157. [41]

Saul, A., P. Carras, and A. Humphrey: 2005, ‘Temporal Properties of Inputs to
Direction-Selective Neurons in Monkey V1’. Journal of Neurophysiology 94, 282–
294. [24, 81]

Sceniak, M., M. Hawken, and R. Shapley: 2001, ‘Visual Spatial Characterization of
Macaque V1 Neurons’. Journal of Neurophysiology 85, 1873–1887. [29, 30, 60, 151,
164, 176]

Sceniak, M. P., M. J. Hawken, and R. Shapley: 2002, ‘Contrast–dependent changes
in spatial frequency tuning of macaque V1 neurons: effects of a changing receptive
field size’. Journal of Neurophysiology 88, 1363–1373. [31]

Sceniak, M. P., D. L. Ringach, M. J. Hawken, and R. Shapley: 1999, ‘Contrast’s effect
on spatial summation by macaque V1 neurons’. Nature Neuroscience 2(8), 733–739.
[31]

Schindler, K. and L. J. Van Gool: 2008, ‘Action snippets: How many frames does
human action recognition require?’. In: Proceedings of the International Conference
on Computer Vision and Pattern Recognition. pp. 1–8. [102]

Schnörr, C.: 1991, ‘Determining optical flow for irregular domains by minimizing
quadratic functionals of a certain class’. The International Journal of Computer
Vision 6(1), 25–38. [47]

203



Schwabe, L., K. Obermayer, A. Angelucci, and P. Bressloff: 2006, ‘The role of feed-
back in shaping the extra–classical receptive field of cortical neurons: a recurrent
network model’. The Journal of Neuroscience 26(36), 9117–9129. [30]

Seitz, S. and C. Dyer: 1997, ‘View-invariant analysis of cyclic motion’. The Interna-
tional Journal of Computer Vision 25(3), 231–251. [102]

Series, P.: 2002, ‘’Etude th’eorique des modulations center/pourtour des propri’et’es
des champs r’ecepteurs du cortex visuel primaire: circuits, dynamiques, et
corr’elats perceptifs’. Ph.D. thesis, Universite de Paris-VI. [29]

Series, P., J. Lorenceau, and Y. Fregnac: 2003, ‘The silent surround of V1 receptive
fields: theory and experiments’. Journal of physiology, Paris 97(4–6), 453–474. [29]

Serre, T.: 2006, ‘Learning a dictionary of shape-components in visual cortex: Compar-
ison with neurons, humans and machines’. Ph.D. thesis, Massachusetts Institute
of Technology, Cambridge, MA. [103]

Serre, T., L. Wolf, and T. Poggio: 2005, ‘Object recognition with features inspired by
visual cortex’. In: Proceedings of the International Conference on Computer Vision
and Pattern Recognition. pp. 994–1000. [103, 106, 169, 183]

Shah, M. and R. Jain: 1997, Motion-based recognition, Computational Imaging and
Vision Series. Kluwer Academic Publisher. [102]

Sigala, R., T. Serre, T. Poggio, and M. Giese: 2005, ‘Learning Features of Intermediate
Complexity for the Recognition of Biological Motion’. ICANN 2005, LNCS 3696 pp.
241–246. [103, 106]

Simoncelli, E. P.: 1993, ‘Dristributed Representation and Analysis of Visual Motion’.
Ph.D. thesis, MIT Media Laboratory. [45]

Simoncelli, E. P. and D. Heeger: 1998, ‘A Model of Neuronal Responses in Visual Area
MT’. Vision Research 38, 743–761. [vi, 44, 48, 64, 65, 66, 76, 81, 114, 164, 165, 170,
177]

Smith, A. T. and G. K. Edgar: 1990, ‘The influence of spatial frequency on perceived
temporal frequency and perceived speed’. Vision Research 30(10), 1467–1474. [34]

Smith, M., N. Majaj, and A. Movshon: 2005, ‘Dynamics of motion signaling by neu-
rons in macaque area MT’. Nature Neuroscience 8(2), 220–228. [39, 40]

Smith, M. A.: 2006, ‘Surround Suppression in the Early Visual System’. The Journal
of Neuroscience 26(14), 3624–3625. [30]

Snowden, R. J., S. Treue, R. G. Erickson, and R. A. Andersen: 1991, ‘The response
of area MT and V1 neurons to transparent motion’. The Journal of Neuroscience
11(9), 2768–2785. [32, 82, 165, 178]

204



Stoner, G. R. and T. D. Albright: 1992, ‘Neural correlates of perceptual motion coher-
ence’. Nature 358, 412–414. [40]

Stumpf, P.: 1911, ‘Über die Abhangigkeit der visuellen Bewegungsrichtung und neg-
ativen Nachbildes von den Reizvorgangen auf der Netzhaut’. Zeitschrift fur Psy-
chologie 59, 321–330. [149]

Suter, D.: 1994, ‘Motion Estimation and Vector Splines’. In: Proceedings of the Inter-
national Conference on Computer Vision and Pattern Recognition. Seattle, WA, pp.
939–942, IEEE. [47]

Tanaka, H. and I. Ohzawa: 2009, ‘Surround Suppression of V1 Neuron Mediates
Orientation–Based Representation of High–Order Visual Features’. Journal of
Neurophysiology 101, 1444–1462. [29]

Tanaka, K., K. Hikosaka, H. Saito, M. Yukie, Y. Fukada, and E. Iwai: 1986, ‘Analysis
of local and wide–field movements in the superior temporal visual areas of the
macaque monkey’. The Journal of Neuroscience 6(1), 134–144. [41]

Tanaka, K. and H. Saito: 1989, ‘Analysis of motion of the visual field by direction,
expansion/contraction, and rotation cells clustered in the dorsal part of the medial
superior temporal area of the macaque monkey’. The Journal of Neurophysiology
62(3), 626–641. [41]

Thorpe, S.: 1990, ‘Spike arrival times: A highly efficient coding scheme for neural
networks’. Parallel processing in neural systems and computers pp. 91–94. [127]

Thorpe, S.: 2002, ‘Ultra-Rapid Scene Categorization with a Wave of Spikes’. In: Bi-
ologically Motivated Computer Vision, Vol. 2525 of Lecture Notes in Computer Sci-
ence. pp. 1–15, Springer-Verlag Heidelberg. [128]

Thorpe, S., A. Delorme, and R. VanRullen: 2001, ‘Spike based strategies for rapid
processing.’. Neural Networks 14, 715–726. [163, 169, 175, 182]

Thorpe, S. and M. Fabre-Thorpe: 2001, ‘Seeking categories in the brain’. Science 291,
260–263. [169, 182]

Thorpe, S., D. Fize, and C. Marlot: 1996, ‘Speed of processing in the human visual
system’. Nature 381, 520–522. [127]

Thurau, C. and V. Hlavac: 2008, ‘Pose primitive based human action recognitio in
videos or still images’. In: Proceedings of the Conference on Computer Vision and
Pattern Recognition. pp. 1–6. [101]

Tistarelli, M.: 1995, ‘Computation of coherent optical flow by using multiple con-
straints’. In: Proceedings of the 5th International Conference on Computer Vision.
pp. 263–268. [46]

205



Tlapale, É., G. S. Masson, and P. Kornprobst: 2008, ‘Motion Integration Modulated
by Form Information’. In: Deuxième conférence française de Neurosciences Compu-
tationnelles. [4, 13, 76, 169, 171, 183, 184]

Todorovic, D.: 1996, ‘A gem from the past: Pleikart Stumpf’s (1911) anticipation of
the aperture problem, Reichardt detectors, and perceived motion loss at equilumi-
nance’. Perception 25(10), 1234–1242. [149]

Topsoe, F.: 2000, ‘Some Inequalities for Information Divergence and Related Mea-
sures of Discrimination’. IEEE Transactions on information theory 46(4), 1602–
1609. [115]

Tran, D. and A. Sorokin: 2008, ‘Human activity recognition with metric learning’.
In: Proceedings of the 10th European Conference on Computer Vision, Vol. 5302 of
LNCS. pp. 548–561, Springer–Verlag. [101]

Ungerleider, L. and M. Mishkin: 1982, Two cortical visual systems., pp. 549–586. MIT
Press. [23]

Vaina, L., J. Solomon, S. Chowdhury, P. Sinha, and J. Belliveau: 2001, ‘Functional
neuroanatomy of biological motion perception in humans’. Proceedings of the Na-
tional Academy of Science 98(20), 11656–11661. [104]

Van Essen, D. C. and J. L. Gallant: 1994, ‘Neural mechanisms of form and motion
processing in the primate visual system’. Neuron 13, 1–10. [23]

Van Santen, J. and G. Sperling: 1984, ‘Temporal covariance model of human motion
perception’. Journal of the Optical Society of America A 1(5), 451–473. [52]

Van Santen, J. and G. Sperling: 1985, ‘Elaborated Reichardt detectors’. Journal of
the Optical Society of America A 2(2), 300–320. [48, 52, 53]

VanRullen, R. and S. J. Thorpe: 2002, ‘Surfing a spike wave down the ventral stream’.
Vision Research 42, 2593–2615. [127, 163, 175]

Victor, J. and K. Purpura: 1996, ‘Nature and precision of temporal coding in visual
cortex: a metric-space analysis.’. J Neurophysiol 76, 1310–1326. [128, 130]

Walker, G. A., I. Ohzawa, and R. D. Freeman: 1999, ‘Asymmetric Suppression Outside
the Classical Receptive Field of the Visual Cortex’. The Journal of Neuroscience
19(23), 10536–10553. [28, 29, 30, 31]

Wallach, H.: 1935, ‘Über visuell wahrgenommene Bewegungsrichtung’. Psychological
Research 20(1), 325–380. [150]

Wang, D. L. and D. Terman: 1995, ‘Locally excitatory globally inhibitory oscillator
networks’. IEEE Trans. Neural Net. 6, 283–286. [128]

206



Wang, L. and D. Suter: 2007, ‘Recognizing Human Activities from Silhouettes: Mo-
tion Subspace and Factorial Discriminative Graphical Model’. In: Proceedings
CVPR. [101]

Watson, A. and A. Ahumada: 1983, ‘A look at motion in the frequency domain’. NASA
Tech. Memo. [48, 50, 52, 53, 85, 136]

Watson, A. and A. Ahumada: 1985, ‘Model of human visual-motion sensing’. J Opt
Soc Am A 2(2), 322–342. [48, 50, 56, 85]

Webb, B. S., N. T. Dhruv, S. G. Solomon, C. Tailby, and P. Lennie: 2005, ‘Early and Late
Mechanisms of Surround Suppression in Striate Cortex of Macaque’. The Journal
of Neuroscience 25(50), 11666–11675. [29, 30, 31]

Wielaard, D. J., M. Shelley, D. McLaughlin, and R. Shapley: 2001, ‘How Simple Cells
Are Made in a Nonlinear Network Model of the Visual Cortex’. The Journal of
Neuroscience 21(14), 5203–5211. [131]

Wilson, H., V. Ferrera, and C. Yo: 1992, ‘A psychophysically motivated model for two-
dimensional motion perception.’. Visual Neuroscience 9(1), 79–97. [vi, 69, 70, 171,
184]

Wohrer, A. and P. Kornprobst: 2009, ‘Virtual Retina : A biological retina model
and simulator, with contrast gain control’. Journal of Computational Neuroscience
26(2), 219. DOI 10.1007/s10827-008-0108-4. [128, 167, 179]

Wong, S.-F. and R. Cipolla: 2007, ‘Extracting Spatiotemporal Interest Points using
Global Information’. In: Proceedings of the 11th International Conference on Com-
puter Vision. pp. 1–8. [102]

Wong, S.-F., T.-K. Kim, and R. Cipolla: 2006, ‘Learning Motion Categories using both
Semantic and Structural Information’. In: Proceedings of the International Confer-
ence on Computer Vision and Pattern Recognition. pp. 1–6. [102]

Wong, S.-F., T.-K. Kim, and R. Cipolla: 2007, ‘Learning Motion Categories Using
Both Semantic and Structural Information’. In: Proceedings of the International
Conference on Computer Vision and Pattern Recognition. pp. 1–6. [101, 103]

Wuerger, S., R. Shapley, and N. Rubin: 1996, ‘"On the visually perceved direction of
motion" by Hans Wallach: 60 years later’. Perception 25, 1317–1367. [150]

Xiao, D., S. Raiguel, V. Marcar, J. Koenderink, and G. A. Orban: 1995, ‘Spatial Hetero-
geneity of Inhibitory Surrounds in the Middle Temporal Visual Area’. Proceedings
of the National Academy of Sciences 92(24), 11303–11306. [93, 113, 133, 166, 170,
178, 179, 183]

207



Xiao, D.-K., V. Marcar, S. Raiguel, and O. G.A.: 1997a, ‘Selectivity of Macaque MT/V5
Neurons for Surface Orientation in Depth Specified by Motion’. European Journal
of Neuroscience 9, 956–964. [36]

Xiao, D. K., S. Raiguel, V. Marcar, and G. A. Orban: 1997b, ‘The spatial distribution
of the antagonistic surround of MT/V5 neurons.’. Cereb Cortex 7(7), 662–77. [36,
39, 92, 93, 113, 133, 166, 170, 179, 183]

Yilmaz, A. and M. Shah: 2008, ‘A differential geometric approach to representing the
human actions’. Computer vision and image understanding 119(3), 335–351. [101]

Yo, C. and H. Wilson: 1992, ‘Perceived direction of moving two-dimensional patterns
depends on duration, contrast and eccentricity.’. Vision Res 32(1), 135–47. [57]

Zaksas, D. and T. Pasternak: 2005, ‘Area MT Neurons Respond to Visual Motion
Distant From Their Receptive Field’. Journal of Neurophysiology 94, 4156–4167.
[32]

Zelnik-Manor, L. and M. Irani: 2001, ‘Event-based analysis of video’. In: Proceedings
of CVPR’01, Vol. 2. pp. 123–128. [101, 103]

Zelnik-Manor, L. and M. Irani: 2006, ‘Statistical Analysis of Dynamic Actions’. IEEE
Transactions on Pattern Analysis and Machine Intelligence 28(9), 1530–1535. [115]

Zhu, G., G. W. Xu, Changsheng, and Q. Huang: 2006, ‘Action recognition in broadcast
tennis video using optical flow and support vector machine’. In: Proceedings of
the 9th European Conference on Computer Vision, Vol. 3979 of Lecture Notes in
Computer Science. Springer Berlin / Heidelberg, pp. 89–98. [101]

208


