
The C++ Preprocessor
A C++ (or C) compiler begins by invoking thepreprocessor, a program that uses special state-
ments, known asdirectivesor control statements, that cause special compiler actions such as:

• file inclusion, in which the file being preprocessed incorporates the contents of another file,
exactly as if the included file’s text were actually part of the including file;

• macro substitution, in which one sequence of text is replaced by another;

• conditional compilation, in which parts of the source file’s code can be eliminated at compile
time under certain circumstances.

All preprocessor directives begin with the# symbol (known aspoundor hash), whichmust occur
in the leftmost column of the line. A preprocessor directive that takes up more than one line needs
acontinuationsymbol,\ (backslash), as the very last character of every line except the last.

File Inclusion

To include a file inside the file that you are currently compiling, use the#include directive,
which takes either of two forms:

1. #include < filename> // Note: filename in pointy brackets
which includes the given file from one of the standard directories (e.g., the directory
/usr/include/cxx onecnalpha );

2. #include " filename" // Note: filename in double quotes
which includes the given file from the current working directory.

The#include directive is replaced by the entire contents of the requested file.

File inclusion can be nested; that is, if you have a file namedmyprogram.h that includes the stan-
dard input/output stream file namediostream.h , and you have a file namedmyprogram.cpp
that includes the filemyprogram.h , then when you compile the filemyprogram.cpp , the files
myprogram.h andiostream.h will both get included, in the appropriate places.

Macro Substitution

A macrois a sequence of text that is defined as another (perhaps empty) sequence of text. After a
macro has been defined, whenever the preprocessor encounters that macro in the text of the source
file being preprocessed, it replaces the macro with the substitution text.

To define a macro, you use the#define preprocessor directive, like so:

#define MACRO_NAME text_to_be_substituted

OnceMACRONAMEhas been defined, then for the rest of the source file being preprocessed, the
preprocessor will replace any occurrence ofMACRONAMEwith text to be substituted .
For example, if your source file has:

#define Integer2Byte short
#define NUMBER_OF_STUDENTS_IN_CS2413_SUMMER_2000 45
...
Integer2Byte numberOfStudents =

NUMBER_OF_STUDENTS_IN_CS2413_SUMMER_2000;

the preprocessor will delete the macro definition lines and replace the declaration statement with:

short numberOfStudents =
45;

1



Note that you can define a macro with no substitution text:

#define THIS_MACRO_HAS_NO_SUBSTITUTION_TEXT

In this case, the preprocessor simply takes note of the fact that the macro exists; if it encounters
the macro within the source text, it simply deletes it. This property may seem, at first blush, to be
pretty useless, but it turns out to be very handy in conditional compilation (below).

Note that you can “undefine” (eliminate) a macro definition using the#undef directive:

#undef NUMBER_OF_STUDENTS_IN_CS2413_SUMMER_2000

Conditional Compilation

To compile conditionally, define a macro or set of macros and then use one of these:

• The#ifdef -#endif directive pair:

#ifdef INCREMENT_A
a = a + 1;

#endif

Note that#ifdef stands for “ifhasbeen defined;” in this case, the statement

a = a + 1;

will only be compiled if the macro namedINCREMENTA hasbeen defined (regardless of
what substitution text, if any, is associated withINCREMENTA); if INCREMENTA has not
been defined, then the statement will be deleted.

• The#ifndef -#endif directive pair:

#ifndef DECREMENT_B_AND_C
b = b - 1;
c = c - 1;

#endif

Note that#ifndef stands for “ifhas notbeen defined;” in this case, the statements

b = b - 1;
c = c - 1;

will only be compiled ifDECREMENTB ANDChas notbeen defined (regardless of substi-
tution text, if any); ifDECREMENTB ANDC hasbeen defined, then the statements will be
deleted.

• The#if -#endif directive pair:

Point::Point ()
{
#if DEBUGGING_VERBOSITY > 1

cout << "Default Point constructor called" << endl;
#endif

_x = 0; _y = 0;
}

In this case, the statement

cout << "Default Point constructor called" << endl;

2



will be compiled only if the integer-valued expressionDEBUGGINGVERBOSITY > 1
evaluates to the Boolean valuetrue (i.e., any non-zero integer value); if the expression
evaluates to the Boolean valuefalse (i.e., integer zero), then the statement will be deleted.
For example, if the macroDEBUGGINGVERBOSITYhas been defined as 2 (which is greater
than 1), then the statement will be compiled, but ifDEBUGGINGVERBOSITYhas been de-
fined as 1 (which is not greater than 1), then the statement will be deleted.

Note that the expression that follows#if can have any legal C++ syntax for integer-valued
expressions, but its atomic terms must be either (a) integer-valued literal constants (such as
2, 19, -303984, etc.), or (b) macros that reduce to integer-valued literal constants; that is, no
variables, function calls or method invocations are permitted, because the preprocessor (as
opposed to the actual compiler) doesn’t know anything about them.

Note that all three of these conditional compilation forms have an associated#else directive,
whose text will be compiledif and only if the associated#ifdef , #ifndef or #if clause is
not compiled; for example:

#ifdef LOOP_BACKWARDS
for (i = last; i >= first; i--)

#else
for (i = first; i <= last; i++)

#endif

In addition to defining macros inside of source files, you can also define them in the command line
of the g++ compiler (and most other Unix-based C++ compilers), using the-D compiler option
(note that the percent sign%is the Unix prompt):

% g++ -DDEBUG_VERBOSITY=2 Point.cpp

Notice that there is no space between the-D and the name of the macro being defined, and that its
substitution text, if any, comes after an equals sign, with no spaces in between.

In this case, the compiler behaves exactly as ifPoint.cpp began with a directive

#define DEBUG_VERBOSITY 2

Likewise, macros can be undefined in the compile command using the-U compiler option:

% g++ -UDEBUG_VERBOSITY Point.cpp

In this case, the compiler behaves exactly as ifPoint.cpp began with a directive

#undef DEBUG_VERBOSITY

Header Files

In many cases, we want to isolate a set of macro definitions and class declarations from the exe-
cutable code of the associated methods or functions, because we need the definitions and declara-
tions to be known in a variety of places throughout a large program, but we only need to compile
the executable code once.

For example, suppose that we have a class namedPoint , and suppose that we want, in ourmain
routine, to declare a variable that is an instance ofPoint ; e.g.,

int main ()
{

Point p;
...

}

3



In this case, we need formain to know the definition of thePoint class, but we don’t needmain
to know the particulars of how the methods ofPoint are implemented.

When this situation comes up, we create a special file, known as aheader file, that contains the
appropriate macros and declarations, but not the associated method or function implementations.
We include this file at the top of the associated file of executable statements, as well as at the top
of the file that containsmain .

For example, we might have a file namedPoint.h that looks like this:

#ifndef Point_h
#define Point_h

class Point {
friend ostream& operator<< (ostream& s, Point& p);
protected:

double _x, _y;
public:

Point();
virtual ~Point();
void display();
...

} ; // class Point

#endif // #ifndef Point_h

Associated with this file would be a file namedPoint.cpp , containing the source code of the
definitions of the methods of the classPoint , that looks like this:

#include <iostream.h>
#include "Point.h"

Point::Point ()
{

_x = 0; _y = 0;
}

Point::~Point () { }

void Point::display ()
{

cout << "x = " << _x << ", y = " << _y << endl;
}
...

Notice that the fileiostream.h is asserted to be in a standard include directory, because in its
#include directive it’s between pointy brackets, whilePoint.h is asserted to be in the current
working directory, because in its#include directive it’s between double quotes.

Also notice that, in the text ofPoint.h , there are several directives that may at first seem odd:

#ifndef Point_h
#define Point_h
...
#endif // #ifndef Point_h

4



What purpose do these directives serve? They insure that the filePoint.h is included no more
than once during any given compilation.

How does this work? Well, preprocessor directives are executed in the order in which the pre-
processor encounters them. Thus, the first time thatPoint.h is included, the macroPoint h
has not yet been defined. So, the directive#ifndef Point h (“if Point h has not yet been
defined”) evaluates totrue , and therefore all of the statements (including preprocessor directives)
between the#ifndef Point h directive and the#endif directive will be compiled.

The very first statement after the#ifndef Point h directive is the#define Point h di-
rective. If, later during this current compilation, there is another attempt to includePoint.h ,
then the#ifndef Point h will evaluate tofalse , becausePoint.h will by then have been
defined. In this case, the rest of the filePoint.h will not be included in that place – which is fine,
because it already has been included, earlier during this compilation, so the preprocessor already
knows everything thatPoint.h contains.

Summary

The C++ preprocessor is a powerful tool for manipulating text files. While file inclusion, macro
substitution and conditional compilation are its most popular features, some versions of the pre-
processor provide additional directives such as#pragma , which can be used for implementation-
specific features such as parallelization (for multiprocessing) and optimization of executable state-
ments.

References

S. Radhakrishnan, L. Wise & C. N. Sekharan,Object-Oriented Data Structures Featuring C++,
1999.

B. Stroustrup,The C++ Programming Language(1st ed.), Addison-Wesley Publishing Co., Mas-
sachusetts, 1986.

5


